scholarly journals ptFVa ( Pseudonaja Textilis Venom-Derived Factor Va) Retains Structural Integrity Following Proteolysis by Activated Protein C

Author(s):  
Mark Schreuder ◽  
Xiaosong Liu ◽  
Ka Lei Cheung ◽  
Pieter H. Reitsma ◽  
Gerry A.F. Nicolaes ◽  
...  

Objective: The Australian snake ptFV ( Pseudonaja textilis venom-derived factor V) variant that retains cofactor function despite APC (activated protein C)-dependent proteolysis. Here, we aimed to unravel the mechanistic principles by determining the role of the absent Arg306 cleavage site that is required for the inactivation of Fva (mammalian factor Va). Approach and Results: Our findings show that in contrast to human FVa, APC-catalyzed proteolysis of ptFVa at Arg306 and Lys507 does not abrogate ptFVa cofactor function. Remarkably, the structural integrity of APC-proteolyzed ptFVa is maintained indicating that stable noncovalent interactions prevent A2-domain dissociation. Using Molecular Dynamics simulations, we uncovered key regions located in the A1 and A2 domain that may be at the basis of this remarkable characteristic. Conclusions: Taken together, we report a completely novel role for uniquely adapted regions in ptFVa that prevent A2 domain dissociation. As such, these results challenge our current understanding by which strict regulatory mechanisms control FVa activity.

1999 ◽  
Vol 82 (11) ◽  
pp. 1462-1468 ◽  
Author(s):  
José Fernández ◽  
Jari Petäjä ◽  
John Griffin

SummaryUnfractionated heparin potentiates the anticoagulant action of activated protein C (APC) through several mechanisms, including the recently described enhancement of proteolytic inactivation of factor V. Possible anticoagulant synergism between APC and physiologic glycosaminoglycans, pharmacologic low molecular weight heparins (LMWHs), and other heparin derivatives was studied. Dermatan sulfate showed potent APC-enhancing effect. Commercial LMWHs showed differing abilities to promote APC activity, and the molecular weight of LMWHs correlated with enhancement of APC activity. Degree of sulfation of the glycosaminoglycans influenced APC enhancement. However, because dextran sulfates did not potentiate APC action, the presence of sulfate groups per se on a polysaccharide is not sufficient for APC enhancement. As previously for unfractionated heparin, APC anticoagulant activity was enhanced by glycosaminoglycans when factor V but not factor Va was the substrate. Thus, dermatan sulfate and LMWHs exhibit APC enhancing activity in vitro that could be of physiologic and pharmacologic significance.


2009 ◽  
Vol 37 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Thomas J. Cramer ◽  
John H. Griffin ◽  
Andrew J. Gale

Blood ◽  
2021 ◽  
Author(s):  
Eliza A Ruben ◽  
Michael J Rau ◽  
James Fitzpatrick ◽  
Enrico Di Cera

Coagulation factor V is the precursor of factor Va that, together with factor Xa, Ca2+ and phospholipids, defines the prothrombinase complex and activates prothrombin in the penultimate step of the coagulation cascade. Here we present cryo-EM structures of human factors V and Va at atomic (3.3 Å) and near-atomic (4.4 Å) resolution, respectively. The structure of fV reveals the entire A1-A2-B-A3-C1-C2 assembly but with a surprisingly disordered B domain. The C1 and C2 domains provide a platform for interaction with phospholipid membranes and support the A1 and A3 domains, with the A2 domain sitting on top of them. The B domain is highly dynamic and visible only for short segments connecting to the A2 and A3 domains. The A2 domain reveals all sites of proteolytic processing by thrombin and activated protein C, a partially buried epitope for binding factor Xa and fully exposed epitopes for binding activated protein C and prothrombin. Removal of the B domain and activation to fVa exposes the sites of cleavage by activated protein C at R306 and R506 and produces increased disorder in the A1-A2-A3-C1-C2 assembly, especially in the C-terminal acidic portion of the A2 domain responsible for prothrombin binding. Ordering of this region and full exposure of the factor Xa epitope emerge as a necessary step for the assembly of the prothrombin-prothrombinase complex. These structures offer molecular context for the function of factors V and Va and pioneer the analysis of coagulation factors by cryo-EM.


Biochemistry ◽  
2002 ◽  
Vol 41 (5) ◽  
pp. 1672-1680 ◽  
Author(s):  
Jay R. Silveira ◽  
Michael Kalafatis ◽  
Paula B. Tracy

Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4348-4354 ◽  
Author(s):  
José A. Fernández ◽  
Tilman M. Hackeng ◽  
Kazuhisa Kojima ◽  
John H. Griffin

AbstractAn important risk factor for thrombosis is the polymorphism R506Q in factor V that causes resistance of factor Va to proteolytic inactivation by activated protein C (APC). To study the potential influence of the carbohydrate moieties of factor Va on its inactivation by APC, factor V was subjected to mild deglycosylation (neuraminidase plus N-glycanase) under nondenaturing conditions. The APC resistance ratio values (ratio of activated partial thromboplastin time [APTT] clotting times with and without APC) of the treated factor V were increased (2.4 to 3.4) as measured in APTT assays. O-glycanase treatment of factor V did not change the APC resistance ratio. The procoagulant activity of factor V as well as its activation by thrombin was not affected by mild deglycosylation. Treatment of factor V with neuraminidase and N-glycanase mainly altered the electrophoretic mobility of the factor Va heavy chain, whereas treatment with O-glycanase changed the mobility of the connecting region. This suggests that the removal of the N-linked carbohydrates from the heavy chain of factor Va, which is the substrate for APC, is responsible for the increase in susceptibility to inactivation by APC. Thus, variability in carbohydrate could account for some of the known variability in APC resistance ratios, including the presence of borderline or low APC resistance ratios among patients who lack the R506Q mutation.


Blood ◽  
1999 ◽  
Vol 94 (3) ◽  
pp. 895-901 ◽  
Author(s):  
Ariella Zivelin ◽  
Sanford Gitel ◽  
John H. Griffin ◽  
Xiao Xu ◽  
Jose A. Fernandez ◽  
...  

Activated protein C resistance (APCR) in the absence of alterations in the factor V gene has been observed during pregnancy, in patients on oral contraceptives, in the presence of antiphospholipid antibodies, and in patients with ischemic stroke. We report a 49-year-old woman with recurrent major venous and arterial thromboses who displayed pronounced APCR, yet no changes in the activated protein C (APC) cleavage sites of factor V. The APCR values determined by four different assays were similar to those obtained in plasma from a homozygote for factor V Q506. Addition of IgG isolated from the patient’s serum to normal plasma lowered the APCR ratio from 2.4 to 1.6. Incubation of patient’s IgG with normal APC resulted in a profound change in the mobility of APC in crossed immunoelectrophoresis. APC was also shown to bind to patient’s IgG immobilized on a protein A agarose column. Factor Va inactivation by APC was inhibited by patient’s IgG, but not by control IgG in the presence or absence of either phospholipids or protein S. These results provide evidence for the existence of an acquired antibody against APC in the patient’s plasma, which gave rise to the APCR phenotype and was probably responsible for the major thrombotic events. We suggest that acquired APCR due to anti-APC antibodies be considered a potential cause for severe venous and arterial thromboses.


1997 ◽  
Vol 272 (33) ◽  
pp. 20678-20683 ◽  
Author(s):  
Kenneth G. Mann ◽  
Matthew F. Hockin ◽  
Kelly J. Begin ◽  
Michael Kalafatis

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 93-93
Author(s):  
Amelia R. Wilhelm ◽  
Nicole A. Parsons ◽  
Charles T. Esmon ◽  
Rodney M. Camire ◽  
Lindsey A. George

Activated factor VIII (FVIIIa) is an essential cofactor in the intrinsic tenase (Xase) enzyme complex that generates factor Xa and propagates clot formation. The FVIIIa heterotrimer is comprised of a metal ion linked dimer (A1/A3-C1-C2 domains) that is associated with the A2 domain by weak non-covalent interactions. Regulation of FXa formation by the intrinsic Xase enzyme complex occurs by FIXa inhibition and mechanisms contributing to FVIIIa inactivation, including: 1) rapid A2 domain dissociation and 2) activated protein C (APC) cleavage of FVIIIa. While FVIIIa inactivation by APC is considered important, there are surprisingly no in vivo studies documenting the hemostatic role of APC in FVIIIa regulation. Further, published data demonstrate APC cleavage of FVIIIa at physiologic protein concentrations occurs over hours while A2 dissociation occurs rapidly over minutes. Thus, it is thought that the predominant mechanism of FVIIIa inactivation is A2 dissociation and APC likely plays a marginal role in FVIIIa regulation. Additionally, unlike described A2 mutations that enhance dissociation and cause hemophilia A (HA), there is no known disease state attributed to altered FVIIIa cleavage by APC. This is in contrast to FVIII's homologous protein, FVa, whereby resistance to APC cleavage is the most common inherited thrombophilia (FV-Leiden [FVL]). Understanding the physiologically relevant mechanisms of FVIIIa inactivation has immediate clinical applicability for understanding safety considerations in HA therapeutics that bypass FVIIIa regulation (FVIII mimetic antibodies, e.g. emicizumab). Further, as evidenced by successful hemophilia B gene therapy trials using a gain of function FIX variant (FIX-Padua), altering FVIIIa inactivation could be exploited for therapeutic benefit in the setting of gene transfer. We aimed to determine the in vivo hemostatic role of APC in FVIIIa regulation and pair these studies with purified system analysis. We introduced Arg to Gln mutations at FVIII APC cleavage sites (R336Q and R562Q, herein called FVIII-QQ) on a B-domain deleted FVIII (FVIII-WT) backbone and produced recombinant FVIII-QQ and FVIII-WT. Unlike FVIII-WT, western blot analysis of FVIII-QQ incubated with APC and phospholipids had no evidence of cleavage. Enzyme kinetic studies using purified components demonstrated no appreciable difference in the Km or Vmax for FX within the intrinsic Xase enzyme complex or A2 dissociation of FVIII-QQ relative to FVIII-WT. These data confirmed no unexpected differences in FVIII-QQ relative to FVIII-WT. To begin to evaluate the role of APC in FVIIIa regulation, we measured thrombin generation in murine and human HA plasma reconstituted with FVIII-QQ or FVIII-WT in the presence of increasing APC concentrations. The IC50 of APC was 2-3-fold higher for FVIII-QQ than FVIII-WT. To evaluate the in vivo hemostatic effect of APC in FVIIIa regulation, HA mice were infused with FVIII-QQ or FVIII-WT and evaluated by tail clip injury and 7.5% FeCl3 carotid artery occlusion models. Required doses of FVIII-QQ to normalize blood loss from a tail clip assay and time to vessel occlusion in a FeCl3 assay were 4-5 fold lower than necessary FVIII-WT doses; the superior hemostatic effect of FVIII-QQ supported the physiologic significance of APC in FVIIIa inactivation. To isolate the role of APC in FVIIIa regulation from APC inactivation of FVa, we backcrossed HA mice with FVL mice to create homozygous HA/FVL mice. HA/FVL mice were infused with FVIII-QQ or FVIII-WT and underwent tail clip assay analysis. Doses of FVIII-QQ required to normalize blood loss were again less than FVIII-WT. To further isolate the enhanced hemostatic effect of FVIII-QQ to APC resistance, we performed the tail clip assay in HA/FVL mice infused with FVIII-QQ or FVIII-WT in the presence or absence of MPC1609, an antibody that blocks murine APC function (Xu et al. J Thromb Haemost 2008). In the presence of MPC1609, the same dose of FVIII-WT and FVIII-QQ was required to normalize blood loss (Figure 1). Collectively, our in vitro and in vivo data support the physiologic significance of APC in FVIIIa regulation. To our knowledge these data are the first to demonstrate the in vivo hemostatic effect of APC in FVIIIa inactivation. Our data may be translated to rationally exploit APC regulation of FVIIIa to develop novel HA therapeutics or further delineate safety considerations in therapies that bypass FVIIIa regulation. Figure 1 Disclosures Camire: Pfizer: Research Funding. George:University of Pennyslvania: Employment; Pfizer: Consultancy; Avrobio: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document