Abstract 1144: Successful Surface-Aminated Nanofiber Expansion of Human Umbilical Cord-Derived CD133+ Cells Leads to Augmentation of Angiogenic Functionality In Vitro and In Vivo

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hiranmoy Das ◽  
Matthew Joseph ◽  
Nasreen Abdulhameed ◽  
Hai-Quan Mao ◽  
Vincent J Pompili

Background: Umbilical cord blood (UCB) and marrow-derived CD133+ cells have been shown to mediate encouraging effects on therapeutic angiogenesis in both animal models and early clinical trials. Low numbers of CD133+ cells derived from a single donor have been a limitation of use of these cells in cardiovascular therapy. We hypothesized that an ex vivo aminated nanofiber system combined with cytokine supplementation would provide optimized topographical and biochemical signals to allow the expansion and potential functional augmentation of CD133+ cells without promoting terminal differentiation. Methods and Results: Human UCB derived CD133+ progenitor cells were isolated by MACS sorting and ex vivo expanded on aminated nanofiber plates with cytokine rich media. Cells harvested 10 days after expansion demonstrated a 225X increase in total number. Flow cytometric analysis demonstrated CD133–24%, CD34–93%, CXCR4–97%, LFA-97% surface expression. The expanded cells can uptake AcLDL efficiently and demonstrate a 2.3X increase in transwell migration to SDF-1 as compared to fresh UCB CD133+ cells. In vitro analysis revealed that expanded cells have potential to differentiate into endothelial or smooth muscle phenotype as demonstrated with CD31, vWF, VCAM-1 and F-pholloidin, α-actin, and SM myosin heavy chain immunocytochemistry when re-cultured for 14d in EGM2 or SMBM respectively. RT-QPCR analysis of 1% O 2 exposed (hypoxic) cells demonstrated a 2X increase in VEGF and 3X increase in IL-8 gene expression compared to normoxic control. In vivo functionality in a NOD/SCID mouse hind limb ischemic model demonstrated that mice treated with 5 x 10 6 expanded cells (n=7) augmented blood flow ratio (ischemic/control limb) as compared to mice treated with CD133+ cells (n=7) and control (n=7) at 28d. (control 0.32±.02 vs. UCB133+ 0.37±.02 vs. expanded cells 0.50±.04 p<0.01) Capillary density in ischemic hind-limb was increased at 28d (control 62.5±5.4 vs. expanded cell 97.6±2.5 p< 0.01) Conclusions: These studies demonstrate successful high level expansion of UCB derived CD133+ cells into functionally potent stem cells which have the capacity to differentiate into vascular cells and promote in vivo neovascularization.

2012 ◽  
Vol 21 (18) ◽  
pp. 3289-3297 ◽  
Author(s):  
Hong-Chao Zhang ◽  
Xin-Bin Liu ◽  
Shu Huang ◽  
Xiao-Yun Bi ◽  
Heng-Xiang Wang ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Anton Selich ◽  
Katharina Zimmermann ◽  
Michel Tenspolde ◽  
Oliver Dittrich-Breiholz ◽  
Constantin von Kaisenberg ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) are used in over 800 clinical trials mainly due to their immune inhibitory activity. Umbilical cord (UC), the second leading source of clinically used MSCs, is usually cut in small tissue pieces. Subsequent cultivation leads to a continuous outgrowth of MSC explant monolayers (MSC-EMs) for months. Currently, the first MSC-EM culture takes approximately 2 weeks to grow out, which is then expanded and applied to patients. The initiating tissue pieces are then discarded. However, when UC pieces are transferred to new culture dishes, MSC-EMs continue to grow out. In case the functional integrity of these cells is maintained, later induced cultures could also be expanded and used for cell therapy. This would drastically increase the number of available cells for each patient. To test the functionality of MSC-EMs from early and late induction time points, we compared the first cultures to those initiated after 2 months by investigating their clonality and immunomodulatory capacity. Methods We analyzed the clonal composition of MSC-EM cultures by umbilical cord piece transduction using integrating lentiviral vectors harboring genetic barcodes assessed by high-throughput sequencing. We investigated the transcriptome of these cultures by microarrays. Finally, the secretome was analyzed by multiplexed ELISAs, in vitro assays, and in vivo in mice. Results DNA barcode analysis showed polyclonal MSC-EMs even after months of induction cycles. A transcriptome and secretome analyses of early and late MSC cultures showed only minor changes over time. However, upon activation with TNF-α and IFN-γ, cells from both induction time points produced a multitude of immunomodulatory cytokines. Interestingly, the later induced MSC-EMs produced higher amounts of cytokines. To test whether the different cytokine levels were in a therapeutically relevant range, we used conditioned medium (CM) in an in vitro MLR and an in vivo killing assay. CM from late induced MSC-EMs was at least as immune inhibitory as CM from early induced MSC-EMs. Conclusion Human umbilical cord maintains a microenvironment for the long-term induction of polyclonal and immune inhibitory active MSCs for months. Thus, our results would offer the possibility to drastically increase the number of therapeutically applicable MSCs for a substantial amount of patients.


2019 ◽  
Vol 15 (11) ◽  
pp. 2179-2192
Author(s):  
Yuanyuan Xie ◽  
Wei Liu ◽  
Bing Zhang ◽  
Bin Wang ◽  
Liudi Wang ◽  
...  

Until now, there is no effective method for tracking transplanted stem cells in human. Ruicun (RC) is a new ultra-small SPIONs agent that has been approved by China Food and Drug Administration for iron supplementation but not as a stem cell tracer in clinic. In this study, we demonstrated magnetic resonance imaging-based tracking of RC-labeled human umbilical cord derived mesenchymal stem cells (MSCs) transplanted to locally injured site of rat spinal cords. We then comprehensively evaluated the safety and quality of the RC-labeled MSCs under good manufacturing practicecompliant conditions, to investigate the feasibility of SPIONs for inner tracking in stem cell-based therapy (SCT). Our results showed that RC labeling at appropriate dose (200 μg/mL) did not have evident impacts on characteristics of MSCs in vitro, demonstrating safety, non-carcinogenesis, and non-tissue inflammation in vivo. The systematic assessments of intracellular biocompatibility indicated that the RC labeled MSCs met with mandatory requirements and standards for law-regulation systems regarding SCT, facilitating translation of cell-tracking technologies to clinical trials.


2018 ◽  
Vol 373 (2) ◽  
pp. 379-393 ◽  
Author(s):  
Tao Zhang ◽  
Pan Wang ◽  
Yanxia Liu ◽  
Jiankang Zhou ◽  
Zhenqing Shi ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3693-3693
Author(s):  
Marcie R. Finney ◽  
Nicholas G. Greco ◽  
Matthew E. Joseph ◽  
Daniel G. Winter ◽  
Shyam Bhakta ◽  
...  

Abstract Previous reports have demonstrated efficacy of cellular therapy in mediating therapeutic angiogenesis in response to ischemia. We sought to determine the potential efficacy of adult umbilical cord blood (UCB) derived selected CD133+ cells in the murine hind limb ischemia model and to characterize these cells by surface phenotype and functionality prior to injection. Methods and Results: Mononuclear cells (MNC) from UCB were labeled with CD133+ conjugated magnetic beads, followed by automated sorting through magnetic columns (Miltenyi). Routine yield of CD133+ cells was 0.51 ± 0.2% of MNC, with a purity of 78.7 ± 2.4% (n=30). Surface expression in the UCB CD133+ population was 3.59 ± 1.49% KDR(VEGFR2), 8.66 ± 3.79% CXCR4 and 22.74 ± 2.84% CD105 compared to 7.14 ± 2.15% KDR, 28.54 ± 5.81% CXCR4 and 6.74 ± 2.07% CD105 in the UCB MNC population. Transwell plates with 5μm collagen coated filters (Costar) were used to observe chemotactic migration of MNC or CD133+ cells towards SDF-1 (100ng/mL) compared to control wells containing media alone. Following a 3 hour incubation, the cells migrating to the bottom wells were counted by flow cytometry with TruCOUNT™ tubes (BD Biosciences). MNC and CD133+ cells migration to SDF showed a 4.9 ± 2.9 and 1.8 ± 0.7 fold increase over the negative control respectively. To test vasculogenic functionality of these selected cell populations, NOD/SCID mice underwent ligation of the right femoral artery and were randomized into 3 study groups: control (endothelial media with cytokines), non-selected MNC (1 x 106 cells/mouse) or CD133+ (0.5 x 106 cells/mouse) given via intracardiac injection immediately after injury. Doppler flow measurements were taken on both limbs each week for 4 weeks and the ratio of perfusion in the ischemic/healthy limb was calculated. At 28 days, perfusion ratios were statistically higher in study groups receiving CD133+ cells from UCB, 0.55 ± 0.07 (n=8) compared to cytokine controls 0.39 ± 0.02 (n=10, p=0.019). Mice receiving MNC did not show statistically significant improvement over control animals 0.42 ± 0.06 (n=7, p=0.27). Conclusion: Surface phenotyping was notable for increased expression of the receptor for SDF-1, CXCR4 on MNC when compared to CD133+ cells. In vitro functional assays showed that CD133+ and MNC exhibited increased chemotactic migration to SDF-1. In vivo studies showed that injection of UCB CD133+ cells improved blood flow compared with cytokines alone in the murine hind limb injury model, highlighting the vasculogenic potential of CD133+ cells from UCB.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3697-3697
Author(s):  
Eun-Sun Yoo ◽  
KiHwan Kwon ◽  
Jee-Young Ahn ◽  
Soo-Ah Oh ◽  
Hye-Jung Chang ◽  
...  

Abstract Backgroud: Human umbilical cord blood (UCB) contains a high number of endothelial progenitor cells (EPCs) and may be useful for the treatment of ischemic disease. Recently, we have isolated EPCs from UCB having different biologic properties for angiogenic capabilities in vitro. In this present study, the aim is to examine the usefulness of OECs in hind-limb ischemia. Methods: Mononuclear cells from UCB cultured using EGM-2 medium with VEGF, IGF-1 and FGF for 21 days. Early spindle-shaped cells (early OECs), which were grown during the first week of culture and late cobblestone shaped cells (late OECs), which were in peak growth during the third week of culture were found. The hind-limb ischemia was established as follows: Athymic nude mice (BALB/C-nu) 18–22 g in weight were anesthetized with pentobarbital (60 mg/kg) and their left femoral arteries and main extension arteries were operatively resected. To examine the effect of the vasculogenesis of the two types of OECs, the mice were divided into three groups (PBS, early and late OECs). Twenty-four hours after operative excision 5 × 105 OECs in 200 μl and an equal volume of PBS were administered by intramuscular injection into the mice on hind-limb ischemia. To compare the effect of OECs on neovascularization in vivo, the analysis of blood flow of ischemic and healthy hind limbs was performed on days 1 and 21 after surgery using near-infrared (NIR) imaging with incocyanne Green (ICG). Results: Late OECs expressed a high level of mRNA on endothelial marker genes and formed capillary tubes in Matrigel plates. The early spindle cells excreted more angiogenic cytokines and had more migratory ability. We divided the mice into two groups according to the degree of perfusion; good (22.5–50%/min) and poor (0–22.5%) perfusion. OECs improved the blood flow of the ischemic hind-limb in the ’good’ perfusion group but not in the ’poor’ perfusion group. Early OECs led to a more significant improvement in blood flow than that of the late OECs. Conclusion: The different types of OECs from UCB have different biologic properties in vitro and different vasculogenic potential in vivo as well. The results might have potential application for the treatment of hind-limb ischemia.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Peter Szaraz ◽  
Matthew Librach ◽  
Leila Maghen ◽  
Farwah Iqbal ◽  
Tanya A. Barretto ◽  
...  

Myocardial infarction (MI) causes an extensive loss of heart muscle cells and leads to congestive heart disease (CAD), the leading cause of mortality and morbidity worldwide. Mesenchymal stromal cell- (MSC-) based cell therapy is a promising option to replace invasive interventions. However the optimal cell type providing significant cardiac regeneration after MI is yet to be found. The aim of our study was to investigate the cardiomyogenic differentiation potential of first trimester human umbilical cord perivascular cells (FTM HUCPVCs), a novel, young source of immunoprivileged mesenchymal stromal cells. Based on the expression of cardiomyocyte markers (cTnT, MYH6, SIRPA, and CX43) FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to bone marrow MSCs, while their immunogenicity remained significantly lower as indicated by HLA-A and HLA-G expression and susceptibility to T cell mediated cytotoxicity. When applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells within 1 week of coculture, making them the first MSC type with this ability. Our results indicate that young FTM HUCPVCs have superior cardiomyogenic potential coupled with beneficial immunogenic properties when compared to MSCs of older tissue sources, suggesting thatin vitropredifferentiation could be a potential strategy to increase their effectivenessin vivo.


Sign in / Sign up

Export Citation Format

Share Document