Abstract 1861: Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM Clinical Trial): One Year Outcome

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Juan Chachques ◽  
Jorge Trainini ◽  
Miguel Cortes-Morichetti ◽  
Olivier Schussler ◽  
Alain Carpentier

Objectives Cell transplantation for myocardial regeneration is limited by poor graft viability and low cell retention. In addition, in ischemic cardiomyopathy the extracellular matrix is deeply altered. Therefore it could be important to associate a procedure aiming at regenerating myocardial cells and restoring the extracellular matrix function. We evaluated intrainfarct stem cell therapy associated with a cell-seeded collagen scaffold grafted onto infarcted ventricles. Methods In 15 patients (aged 54.2±3.8 years) presenting LV postischemic myocardial scars (age of the infarcts 8.2±3.5 months) and with indication for a single OP-CABG, bone marrow was collected by aspiration from the iliac crest. The cell suspension was loaded on Ficoll-Paque density gradient and 300 ± 28 million mononuclear bone marrow cells (BMC) were implanted during surgery in the scar. A type I collagen matrix seeded with the same number of BMC (300 ± 28 million cells) was added on top of the scarred area and fixed onto the epicardium by 6 single PDS sutures and covered by a second non-cellularized matrix. Results There was no mortality and any related adverse events (follow-up 15±4.2 months), no malignant cardiac arrhythmias were reported, no patient was lost to follow-up. NYHA FC improved from 2.3±0.5 to 1.4±0.3 (p=0.005). LV end-diastolic volume evolved from 142±24 to 117±21mL (p=0.03), LV filling deceleration time improved from 162±7ms to 196±8ms (p=0.01). Scar area thickness progress from 6±1.4 to 9±1.5mm (p=0.005). EF improved from 25±7 to 33±5% (p=0.04). Conclusions Simultaneous intramyocardial injection of BMC and fixation of a cell seeded matrix onto the epicardium is feasible and safe. The cell seeded collagen matrix seems to increase the thickness of the infarct scar with viable tissues and help to normalize cardiac wall stress in injured regions, thus limiting ventricular remodelling and improving diastolic function. Functional improvements can not be conclusively related to the cells and matrix due to the association of CABG. Cardiac tissue engineering seems to be a promising way for the creation of “bioartificial myocardium”. Efficacy and safety of this approach should be evaluated in a large randomized controlled trial.

2007 ◽  
Vol 16 (9) ◽  
pp. 927-934 ◽  
Author(s):  
Juan C. Chachques ◽  
Jorge C. Trainini ◽  
Noemi Lago ◽  
Osvaldo H. Masoli ◽  
Jose L. Barisani ◽  
...  

Cell transplantation for the regeneration of ischemic myocardium is limited by poor graft viability and low cell retention. In ischemic cardiomyopathy the extracellular matrix is deeply altered; therefore, it could be important to associate a procedure aiming at regenerating myocardial cells and restoring the extracellular matrix function. We evaluated intrainfarct cell therapy associated with a cell-seeded collagen scaffold grafted onto infarcted ventricles. In 15 patients (aged 54.2 ± 3.8 years) presenting LV postischemic myocardial scars and with indication for a single OP-CABG, autologous mononuclear bone marrow cells (BMC) were implanted during surgery in the scar. A 3D collagen type I matrix seeded with the same number of BMC was added on top of the scarred area. There was no mortality and no related adverse events (follow-up 15 ± 4.2 months). NYHA FC improved from 2.3 ± 0.5 to 1.4 ± 0.3 (p = 0.005). LV end-diastolic volume evolved from 142 ± 24 to 117 ± 21 ml (p = 0.03), and LV filling deceleration time improved from 162 ± 7 to 196 ± 8 ms (p = 0.01). Scar area thickness progressed from 6 ± 1.4 to 9 ± 1.5 mm (p = 0.005). EF improved from 25 ± 7% to 33 ± 5% (p = 0.04). Simultaneous intramyocardial injection of mononuclear bone marrow cells and fixation of a BMC-seeded matrix onto the epicardium is feasible and safe. The cell-seeded collagen matrix seems to increase the thickness of the infarct scar with viable tissues and helps to normalize cardiac wall stress in injured regions, thus limiting ventricular remodeling and improving diastolic function. Patients' improvements cannot be conclusively related to the cells and matrix due to the association of CABG. Cardiac tissue engineering seems to extend the indications and benefits of stem cell therapy in cardiology, becoming a promising way for the creation of a “bioartificial myocardium.” Efficacy and safety of this approach should be evaluated in a large randomized controlled trial.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hongliang He ◽  
Xiaozhen Liu ◽  
Liang Peng ◽  
Zhiliang Gao ◽  
Yun Ye ◽  
...  

Interactions between stem cells and extracellular matrix (ECM) are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimickedin vivoliver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS), bone marrow mesenchymal stem cells (BM-MSCs) cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.


1990 ◽  
Vol 259 (2) ◽  
pp. F326-F337 ◽  
Author(s):  
A. V. Cybulsky ◽  
J. V. Bonventre ◽  
R. J. Quigg ◽  
L. S. Wolfe ◽  
D. J. Salant

To understand how glomerular epithelial cell (GEC) growth might be regulated in health and disease, we studied the effects of growth factors and extracellular matrix on proliferation and membrane phospholipid turnover in cultured rat GECs. In GECs adherent to type I collagen matrix, epidermal growth factor (EGF), insulin, and serum stimulated DNA synthesis and increased cell number. In addition, GECs proliferated when adherent to type IV collagen, but not to laminin or plastic substrata. Attachment of GECs to the substrata that facilitated proliferation (types I or IV collagen) produced increases in 1,2-diacylglycerol (DAG), an activator of protein kinase C (PKC). Increased DAG was associated with hydrolysis of inositol phospholipids and an increase in inositol trisphosphate and was not dependent on the presence of growth factors. After PKC downregulation (by preincubation with a high dose of phorbol myristate acetate), DNA synthesis was enhanced in GECs adherent to collagen. Thus contact of GECs with collagen matrices is required for serum, EGF, or insulin to induce proliferation. Collagen matrix also activates phospholipase C. As a result, the DAG-PKC signaling pathway desensitizes GECs to the mitogenic effects of growth factors and might promote cell differentiation. Understanding the interaction between GECs, growth factors, and extracellular matrix may elucidate the mechanisms of proliferation during glomerular injury.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3580-3591
Author(s):  
N Falla ◽  
Vlasselaer Van ◽  
J Bierkens ◽  
B Borremans ◽  
G Schoeters ◽  
...  

In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro.


Spine ◽  
2005 ◽  
Vol 30 (10) ◽  
pp. 1134-1138 ◽  
Author(s):  
Akihito Minamide ◽  
Munehito Yoshida ◽  
Mamoru Kawakami ◽  
Satoru Yamasaki ◽  
Hirotsugu Kojima ◽  
...  

2016 ◽  
Vol 113 (27) ◽  
pp. 7551-7556 ◽  
Author(s):  
Ainhoa Arina ◽  
Christian Idel ◽  
Elizabeth M. Hyjek ◽  
Maria-Luisa Alegre ◽  
Ying Wang ◽  
...  

Fibroblasts are common cell types in cancer stroma and lay down collagen required for survival and growth of cancer cells. Although some cancer therapy strategies target tumor fibroblasts, their origin remains controversial. Multiple publications suggest circulating mesenchymal precursors as a source of tumor-associated fibroblasts. However, we show by three independent approaches that tumor fibroblasts derive primarily from local, sessile precursors. First, transplantable tumors developing in a mouse expressing green fluorescent reporter protein (EGFP) under control of the type I collagen (Col-I) promoter (COL-EGFP) had green stroma, whereas we could not find COL-EGFP+ cells in tumors developing in the parabiotic partner lacking the fluorescent reporter. Lack of incorporation of COL-EGFP+ cells from the circulation into tumors was confirmed in parabiotic pairs of COL-EGFP mice and transgenic mice developing autochthonous intestinal adenomas. Second, transplantable tumors developing in chimeric mice reconstituted with bone marrow cells from COL-EGFP mice very rarely showed stromal fibroblasts expressing EGFP. Finally, cancer cells injected under full-thickness COL-EGFP skin grafts transplanted in nonreporter mice developed into tumors containing green stromal cells. Using multicolor in vivo confocal microscopy, we found that Col-I–expressing fibroblasts constituted approximately one-third of the stromal mass and formed a continuous sheet wrapping the tumor vessels. In summary, tumors form their fibroblastic stroma predominantly from precursors present in the local tumor microenvironment, whereas the contribution of bone marrow-derived circulating precursors is rare.


Bone ◽  
1997 ◽  
Vol 20 (2) ◽  
pp. 101-107 ◽  
Author(s):  
M. Mizuno ◽  
M. Shindo ◽  
D. Kobayashi ◽  
E. Tsuruga ◽  
A. Amemiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document