Abstract 13873: Quantitative Characteristics of Left Ventricular Vortex Flow in the Short and Long Axis Views by High Frame Rate Echocardiographic Particle Image Velocimetry

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Haruhiko Abe ◽  
Kasumi Masuda ◽  
Toshihiko Asanuma ◽  
Hikaru Koriyama ◽  
Yukihiro Koretsune ◽  
...  

Background: Vortex flow in the left ventricle (LV) has three-dimensional structure and plays an important role in avoiding excessive dissipation of energy. However, quantitative characteristics of long and short axis (LAX and SAX) vortex flow have not been elucidated. Echocardiographic particle image velocimetry (Echo-PIV) is an emerging technique to evaluate instantaneous vortical flow inside the LV. However, it has a limitation of underestimation of high velocities due to limited frame rate. Moreover, previous investigations have mainly focused on vortex from LAX view. Therefore, we used high frame rate Echo-PIV to quantitate vortex flow in SAX as well as in LAX views to understand characteristics of vortex three-dimensionally. Methods: Echocardiographic contrast images of the LV SAX and LAX were acquired from 8 open-chest healthy dogs. The acquisition frame rate was 135 frames per second and the contrast bubbles density was optimized for blood flow analysis. Echo-PIV analysis was performed off-line by using commercially available software and vorticity data were calculated in the region of interest (ROI) throughout the cardiac cycle. ROI was manually placed on the vortex. Vortex strength was defined as the averaged vorticity within the ROI. Results: In SAX, counterclockwise vortex was seen near the anterior wall, and in LAX clockwise vortex was seen in the anterior mid-ventricle. Both in SAX and LAX views, vortex strength showed significant phasic variations being largest in isovolumic contraction (vortex strength, SAX 9.2±2.3/s, p<0.001; LAX -12.0±2.4/s, p<0.001), and smallest in isovolumic relaxation (SAX -0.8±0.8/s, p<0.001; LAX -1.9±1.9/s, p<0.001). Conclusion: High frame rate Echo-PIV successfully demonstrated a complicated pattern of intracardiac vortex with phasic variation of its strength throughout a cardiac cycle in both SAX and LAX. This method may be a useful tool to assess physiological role of vortex in the flow dynamics.

Author(s):  
Jason Voorneveld ◽  
Lana B.H. Keijzer ◽  
Mihai Strachinaru ◽  
Daniel J. Bowen ◽  
Jeffrey S.L. Goei ◽  
...  

Radiology ◽  
2018 ◽  
Vol 289 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Stefan Engelhard ◽  
Jason Voorneveld ◽  
Hendrik J. Vos ◽  
Jos J. M. Westenberg ◽  
Frank J. H. Gijsen ◽  
...  

1997 ◽  
Author(s):  
Jose Gilarranz ◽  
Karandeep Singh ◽  
Jeonghwan Ko ◽  
Othon Rediniotis ◽  
Andrew Kurdila ◽  
...  

Author(s):  
T Lee ◽  
LS Ko

The vortex flow and lift force generated by a 50°-sweep non-slender reverse delta wing were investigated via particle image velocimetry, together with flow visualization and force balance measurement, at Re = 11,000. The non-slender reverse delta wing produced a delayed stall but a lower lift compared to its delta wing counterpart. The stalling mechanism was also found to be triggered by the disruption of the multiple spanwise vortex filaments developed over the upper wing surface. The vortex flowfield was, however, characterized by the co-existence of reverse delta wing vortices and multiple shear-layer vortices. The outboard location of the reverse delta wing vortex further implies that the lift force is mainly generated by the wing lower surface while the upper surface acts as a wake generator. The spatial progression of the flow parameters of the vortex generated by the non-slender reverse delta wing as a function of α was also discussed.


2017 ◽  
Vol 35 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Chouchou Tang ◽  
Yizhong Zhu ◽  
Jing Zhang ◽  
Chengcheng Niu ◽  
Dan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document