Abstract 16472: Deciphering a Mechanistic Link Between Enhanced Late Sodium Current and Triggered Atrial Fibrillation Using Patient-specific and Gene-corrected Induced Pluripotent Stem Cell-derived Atrial Cardiomyocytes

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Liang HONG ◽  
Olivia T Ly ◽  
Hanna Chen ◽  
Arvind Sridhar ◽  
Meihong Zhang ◽  
...  

Introduction: Gain-of-function mutations in SCN5A, which encodes the cardiac sodium channel, have been linked with familial atrial fibrillation (AF). However, the mechanistic link between the late sodium current (I Na,L ) and triggered arrhythmia remains unclear. Hypothesis: To characterize the electrophysiological (EP) phenotype of gain-of-function AF-linked SCN5A mutations, elucidate the underlying cellular mechanisms using patient-specific and gene-corrected (GC) induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs). Methods: We generated iPSC-aCMs from two families carrying SCN5A mutations (E428K and N470K) and control subjects. Whole-cell patch clamp and multi-electrode arrays were recorded to assess the EP phenotypes of the atrial iPSC-CMs. We corrected the E428K iPSC-aCMs using CRISPR/Cas9 gene editing approach (isogenic control). Results: The SCN5A mutation lines displayed abnormal EP properties including increased beating frequency and irregularity with triggered beats characteristic of AF ( Fig. 1 ). E428K iPSC-aCMs displayed spontaneous arrhythmogenic activity with beat-to-beat irregularity ( Fig. 1 A-D ) with the prolonged APD ( Fig. 1 E-H ) associated with enhanced I Na,L ( Fig. 1 I-L ). In contrast, expression of SCN5A -E428K in heterologous expression system failed to show enhanced I Na,L . The gene-corrected E428K iPSC-aCMs normalized the aberrant EP phenotype. Gene expression profiling revealed differential expression of calcium and potassium channel homeostasis and nitric oxide mediated signal transduction which could result in EP remodeling of atrial CMs. Conclusions: Patient-specific and gene-corrected iPSC-aCMs exhibited striking ex-vivo EP phenotype of an AF-causing SCN5A gain-of-function mutation that produced minimal changes in-vitro . We established a mechanistic link between enhanced I Na,L , ion channel remodeling and nitric oxide signaling pathways, and triggered AF.

2020 ◽  
Vol 118 (3) ◽  
pp. 255a
Author(s):  
David Carreras ◽  
Rebecca Martinez-Moreno ◽  
Elisabet Selga ◽  
Ramon Brugada ◽  
Fabiana S. Scornik ◽  
...  

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Derek Schocken ◽  
Jayna Stohlman ◽  
Xiaoyu Zhang ◽  
Yama Abassi ◽  
Lars Johannesen ◽  
...  

Background: Inhibiting late sodium current (I NaL ) reduced drug-induced QTc prolongation in a recent clinical trial. Induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) have emerged as a valuable tool in preclinical assessment of multichannel blocking drugs’ potential to prolong QT and induce arrhythmias. However, sodium channels in commercially available iPSC-CMs are known to be under expressed, necessitating investigation into the presence and effects of I NaL in this electrophysiological model. Methods and Results: A platform combining simultaneous measurements of field potential and contraction (xCELLigence RTCA CardioECR, ACEA Biosciences) was used to assess the acute effects of three I NaL enhancing drugs, ATX-II, ibutilide, and alfuzosin, given alone or in combination with an I NaL blocker, lidocaine in iPSC-CMs (iCell Cardiomyocytes 2 , Cellular Dynamics). Additionally, dofetilide, diltiazem, and lidocaine alone were included as positive controls for hERG, L-type calcium, and sodium channel block. ATX-II, a potent and specific I NaL enhancer, caused significant dose dependent rate-corrected field potential duration (FPDc) prolongation, which was then subsequently reduced in a dose dependent manner by the addition of lidocaine. At 100 nM ATX-II prolonged the FPDc by 1153.8 ± 135.8 ms from 360.5 ± 16.4 ms at the baseline, which was then reduced to 537 ± 37.4 ms with the addition of 30 μM lidocaine. Ibutilide (0.1-1 μM), a class III antiarrhythmic, caused beating rate decreases and early after depolarizations (EADs) that were not affected by lidocaine addition. Alfuzosin, which increases both peak and late sodium currents, caused dose-dependent reduction of beating rate, FPDc prolongation, and EADs at 5 μM and 10 μM. Alfuzosin-induced EADs were mitigated by addition of lidocaine (5-15 μM). Conclusions: Late sodium current enhancers prolonged repolarization and induced arrhythmias in human iPSC-CMs. These effects were reversed by addition of lidocaine, a specific late sodium current blocker. These results are consistent with the late sodium current being present in iPSC-CMs in the presence of a late sodium current enhancer, which may have implications for drug safety testing.


2017 ◽  
Vol 113 (5) ◽  
pp. 531-541 ◽  
Author(s):  
Marcella Rocchetti ◽  
Luca Sala ◽  
Lisa Dreizehnter ◽  
Lia Crotti ◽  
Daniel Sinnecker ◽  
...  

2010 ◽  
Vol 363 (15) ◽  
pp. 1397-1409 ◽  
Author(s):  
Alessandra Moretti ◽  
Milena Bellin ◽  
Andrea Welling ◽  
Christian Billy Jung ◽  
Jason T. Lam ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Henry Joutsijoki ◽  
Markus Haponen ◽  
Jyrki Rasku ◽  
Katriina Aalto-Setälä ◽  
Martti Juhola

The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient’s cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using ak-NN classifier showing improved accuracy compared to earlier studies.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Francesca Stillitano ◽  
Ioannis Karakikes ◽  
Chi-wai Kong ◽  
Brett Martinelli ◽  
Ronald Li ◽  
...  

Long QT syndrome (LQTS) is characterized by prolonged cardiac repolarization time and increased risk of ventricular arrhythmia. LQTS can be either inherited or induced notably after drugs intake. Mutations in genes encoding cardiac ion channels have been reported to underlie inherited LQTS. In contrast, drug-induced LQTS (diLQTS) most frequently arises from altered function of the hERG channel; the risk of developing diLQTS varies largely between subjects and most people who have life-threatening diLQTS have no known genetic risk factors. We investigated whether the susceptibility to develop diLQTS observed in vivo can be recapitulated in vitro using patient-specific induced pluripotent stem cell (iPSC) technology. We collected skin fibroblasts from ten subjects who developed significant diLQTS after administration of Sotalol and/or Erythromycin. Ten other individuals who displayed no changes in QT interval after administration of the same drugs, were selected. iPSC were generated by retroviral delivery of Oct4, Sox2, Nanog and Klf4 in 17 of the 20 individuals. We report preliminary results obtained from iPSC-derived cardiomyocytes (iPSC-CMs) of two subjects. All experiments were performed in a blinded fashion without knowledge of the associated clinical phenotype. Cardiac differentiation of iPSC resulted in the generation of spontaneously beating embryoid bodies. iPSC-CMs showed positive staining for TNNT2, ACTN2 and Cx43. Gene expression analysis confirmed the expression of NKX2.5, MLC2v, MYH6 and MYH7, and of the relevant KCNH2 gene. The two lines had similar basal electrophysiological properties as assessed by measurements of action potential (AP) by patch-clamp technique and extracellular field potentials (FP) using micro-electrode array (MEA). E4031, a classical HERG blocker, significantly prolonged the FP duration (FPD) in a dose-dependent manner in both lines (EC50: 30.19 and 51.57 respectively). When both Sotalol and Erythromicin were used, FPD was prolonged in one of the two samples in a dose-dependent manner (EC50Sotalol: 100; EC50Erythr: 9.64) while drug response was blunted in the other cell line. This study suggests that patient-specific iPSC can be used to model the functional abnormalities observed in acquired diLQTS.


Sign in / Sign up

Export Citation Format

Share Document