Abstract 17248: The Role of microRNA-21 in Regulating the Coronary Microcirculation in Diabetes

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Cody Juguilon ◽  
Zhiyuan Wang ◽  
James Gadd ◽  
Vahagn A Ohanyan ◽  
Anurag Jamaiyar ◽  
...  

Introduction: Coronary microvascular dysfunction is prevalent among diabetics and intersects with deficits in endothelial-dependent vasodilation. These deficits occur early in the progression of the disease, but the mechanisms remain incompletely understood. Nitric oxide (NO) is the major endothelial-dependent mediator of vasodilation in the healthy coronary circulation, but the mediator switches to hydrogen peroxide (H 2 O 2 ) in coronary artery disease (CAD) patients. Diabetes is a risk factor for CAD, so we hypothesized that a similar switch would occur. Methods: Coronary arteries were isolated and endothelial-dependent vasodilation was assessed using myography. Quantitative polymerase chain reaction (qPCR) was performed for gene expression analysis and myocardial blood flow (MBF) was measured by contrast echocardiography. Results: Nitric oxide synthase inhibitor (L-NAME) inhibited vasodilation in wild type (WT) mice, but the H 2 O 2 scavenger (PEG-catalase) had no effect. In contrast, vasodilation in diabetic mice was blunted by PEG-catalase, but not L-NAME. This suggests that the mediator of coronary vasodilation switched from NO to H 2 O 2 in diabetes. Importantly, we found that microRNA-21 (miR-21) is upregulated in diabetes and the deficiency modulates the mediator switch from NO to H 2 O 2 in diabetic mice. Conclusions: The switch in the mediator of coronary vasodilation from NO to H2O2 contributes to microvascular dysfunction in diabetes and miR-21 regulates this switch. Further genetic profiling will elucidate the pathways and mechanisms converging with miR-21 to regulate microvascular function in diabetes. This is the first mouse model that recapitulates the switch in mediator of coronary vasodilation from NO to H 2 O 2 seen in CAD patients.

2021 ◽  
Author(s):  
Cody Juguilon ◽  
Zhiyuan Wang ◽  
Yang Wang ◽  
Anurag Jamaiyar ◽  
Molly Enrick ◽  
...  

Coronary microvascular dysfunction is prevalent among diabetics and is correlated with cardiac mortality. Compromised endothelial-dependent dilation (EDD) is an early event in the progression of diabetes, but the mechanisms remain incompletely understood. Nitric oxide (NO) is the major endothelium-dependent vasodilatory metabolite in the healthy coronary circulation, but switches to hydrogen peroxide (H2O2) in coronary artery disease (CAD) patients. Because diabetes is a major risk factor for CAD we hypothesized that a similar switch from NO-to-H2O2 occurs in diabetes. Methods: Vasodilation was measured ex vivo in isolated coronary arteries from wild type (WT) and microRNA-21 (miR-21) null mice fed chow or high fat and sugar diet, and LepR null (db/db) mice using myography. Myocardial blood flow (MBF), blood pressure, and heart rate were measured in vivo using contrast echocardiography and a solid-state pressure sensor catheter. RNA from coronary arteries, endothelial cells and hearts were analyzed via qPCR for gene expression and protein expression was assessed via Western-Blot analyses. Superoxide was detected via electron paramagnetic resonance (EPR). Results: 1) Ex vivo coronary EDD and in vivo MBF was impaired in diabetes. 2) L-NAME (NO-synthase inhibitor) inhibited ex vivo coronary EDD and in vivo MBF in WT, while PEG-catalase (H2O2 scavenger) inhibited diabetic EDD ex vivo and MBF in vivo. 5) miR-21 deficiency blocked the NO-to-H2O2 switch and prevented diabetic vasodilation impairments. 6) Diabetic mice displayed increased serum NO and H2O2, upregulated mRNA expression of Sod1, Sod2, iNos, and Cav-1, and downregulated Pgc-1α. Deficiency of miR-21 reversed these changes. 7) miR-21 deficiency increased PGC1α, PPARα and eNOS protein and reduced detection of endothelial superoxide. Conclusions: Diabetics exhibit an NO-to-H2O2 switch in the mediator of EDD coronary dilation, which contributed to microvascular dysfunction and is mediated by miR-21. This study represents the first mouse model recapitulating the NO-to-H2O2 switch seen in CAD patients.


2002 ◽  
Vol 283 (3) ◽  
pp. R561-R567 ◽  
Author(s):  
Judit Molnar ◽  
Mark J. M. Nijland ◽  
David C. Howe ◽  
Peter W. Nathanielsz

Dexamethasone (DM) was administered to pregnant ewes as three weekly courses of four injections of 2 mg at 12-h intervals. DM ( n = 7) or saline ( n= 7) was given starting at 103 days of gestation (dGA; term ∼149 days). Fetal femoral arteries (∼300-μm internal diameter) were evaluated using wire myography at 119 dGA. DM-exposed fetuses were significantly smaller than saline-exposed fetuses. DM exposure increased maximal contraction to 125 mM KCl, and maximum tension developed along with sensitivity to endothelin-1 and relaxation to bradykinin. Preincubation with the nitric oxide synthase inhibitor N G-nitro-l-arginine methyl ester shifted the dose-response curves to endothelin-1 and acetylcholine to the right in controls but not in the DM-exposed group. Relaxation to acetylcholine and to the nitric oxide donor sodium nitroprusside was similar in both groups. The combination of enhanced endothelin-induced vasoconstriction, abnormal endothelium-dependent relaxation, and normal endothelium-independent relaxation indicates microvessel dysfunction following antenatal DM administration. Because such dysfunction is associated with several forms of adult hypertension, our results indicate the potential for consequences of antenatal glucocorticoid exposure on adult cardiovascular health.


1995 ◽  
Vol 268 (6) ◽  
pp. F1004-F1008 ◽  
Author(s):  
F. B. Gabbai ◽  
S. C. Thomson ◽  
O. Peterson ◽  
L. Wead ◽  
K. Malvey ◽  
...  

Endothelium-dependent nitric oxide (EDNO) exerts control over the processes of glomerular filtration and tubular reabsorption. The importance of the renal nerves to the tonic influence of EDNO in the glomerular microcirculation and proximal tubule was tested by renal micropuncture in euvolemic adult male Munich-Wistar rats. The physical determinants of glomerular filtration and proximal reabsorption were assessed before and during administration of the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA), in control animals and in animals 5–9 days after either ipsilateral surgical renal denervation (DNX) or after either sham surgery (SHX). L-NMMA caused single-nephron glomerular filtration rate to decline in control and SHX animals but not in DNX rats. L-NMMA caused a reduction in proximal reabsorption in control and SHX rats, which was prevented by prior DNX. DNX did not alter urinary guanosine 3',5'-cyclic monophosphate excretion, and, although DNX upregulates glomerular angiotensin II (ANG II) receptors, prior DNX did not alter intrarenal ANG II content as evaluated by radioimmunoassay. Some component of renal adrenergic activity is required for the full expression of the glomerular and tubular effects of blockade of nitric oxide synthase.


2010 ◽  
Vol 113 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
Matthias Lange ◽  
Atsumori Hamahata ◽  
Daniel L. Traber ◽  
Yoshimitsu Nakano ◽  
Aimalohi Esechie ◽  
...  

Background Recent evidence suggests that nitric oxide produced via the neuronal nitric oxide synthase is involved mainly in the early response to sepsis, whereas nitric oxide derived from the inducible nitric oxide synthase is responsible during the later phase. We hypothesized that early neuronal and delayed inducible nitric oxide synthase blockade attenuates multiple organ dysfunctions during sepsis. Methods Sheep were randomly allocated to sham-injured, nontreated animals (n = 6); injured (48 breaths of cotton smoke and instillation of Pseudomonas aeruginosa into the lungs), nontreated animals (n = 7); and injured animals treated with a neuronal nitric oxide synthase inhibitor from 1 to 12 h and an inducible nitric oxide synthase inhibitor from 12 to 24 h postinjury (n = 6). Results The injury induced arterial hypotension, vascular leakage, myocardial depression, and signs of renal and hepatic dysfunctions. The treatment significantly attenuated, but did not fully prevent, the decreases in mean arterial pressure and left ventricular stroke work index. Although the elevation of creatinine levels was partially prevented, the decreases in urine output and creatinine clearance were not affected. The injury-related increases in bilirubin levels, international normalized ratio, and lipid peroxidation in liver tissue were significantly attenuated. Although plasma nitrite/nitrate levels were significantly increased versus baseline from 12-24 h in controls, plasma nitrite/nitrate levels were not increased in treated animals. Conclusions The combination treatment shows potential benefit on sepsis-related arterial hypotension and surrogate parameters of organ dysfunctions in sheep. It may be crucial to identify the time course of expression and activation of different nitric oxide synthase isoforms in future investigations.


2002 ◽  
Vol 283 (2) ◽  
pp. R349-R355 ◽  
Author(s):  
Jacqueline Novak ◽  
Rolando J. J. Ramirez ◽  
Robin E. Gandley ◽  
O. David Sherwood ◽  
Kirk P. Conrad

Administration of the ovarian hormone relaxin to nonpregnant rats vasodilates the renal circulation comparable to pregnancy. This vasodilation is mediated by endothelin (ET), the ETB receptor, and nitric oxide. Furthermore, endogenous relaxin mediates the renal vasodilation and hyperfiltration that occur during gestation. The goal of this study was to investigate whether myogenic reactivity of small renal and mesenteric arteries is reduced in relaxin-treated rats comparable to the pregnant condition. Relaxin or vehicle was administered to virgin female Long-Evans rats for 5 days at 4 μg/h, thereby producing midgestational blood levels of the hormone. The myogenic responses of small renal arteries (200–300 μm in diameter) isolated from these animals were evaluated in an isobaric arteriograph system. Myogenic reactivity was significantly reduced in the small renal arteries from relaxin-treated compared with vehicle-treated rats. The reduced myogenic responses were mediated by the ETB receptor and nitric oxide since the selective ETB receptor antagonist RES-701–1 and the nitric oxide synthase inhibitor N G-nitro-l-arginine methyl ester restored myogenic reactivity to virgin levels. The influence of relaxin was not limited to the renal circulation because myogenic reactivity was also reduced in small mesenteric arteries isolated from relaxin-treated rats. Thus relaxin administration to nonpregnant rats mimics pregnancy, insofar as myogenic reactivity of small renal and mesenteric arteries is reduced in both conditions.


Sign in / Sign up

Export Citation Format

Share Document