scholarly journals Human Induced Pluripotent Stem Cell–Derived Engineered Heart Tissue as a Sensitive Test System for QT Prolongation and Arrhythmic Triggers

Author(s):  
Marc D. Lemoine ◽  
Tobias Krause ◽  
Jussi T. Koivumäki ◽  
Maksymilian Prondzynski ◽  
Mirja L. Schulze ◽  
...  
Circulation ◽  
2020 ◽  
Vol 142 (16) ◽  
pp. 1562-1578
Author(s):  
Alexandra Madsen ◽  
Grit Höppner ◽  
Julia Krause ◽  
Marc N. Hirt ◽  
Sandra D. Laufer ◽  
...  

Background: DNA methylation acts as a mechanism of gene transcription regulation. It has recently gained attention as a possible therapeutic target in cardiac hypertrophy and heart failure. However, its exact role in cardiomyocytes remains controversial. Thus, we knocked out the main de novo DNA methyltransferase in cardiomyocytes, DNMT3A, in human induced pluripotent stem cells. Functional consequences of DNA methylation-deficiency under control and stress conditions were then assessed in human engineered heart tissue from knockout human induced pluripotent stem cell–derived cardiomyocytes. Methods: DNMT3A was knocked out in human induced pluripotent stem cells by CRISPR/Cas9gene editing. Fibrin-based engineered heart tissue was generated from knockout and control human induced pluripotent stem cell–derived cardiomyocytes. Development and baseline contractility were analyzed by video-optical recording. Engineered heart tissue was subjected to different stress protocols, including serum starvation, serum variation, and restrictive feeding. Molecular, histological, and ultrastructural analyses were performed afterward. Results: Knockout of DNMT3A in human cardiomyocytes had three main consequences for cardiomyocyte morphology and function: (1) Gene expression changes of contractile proteins such as higher atrial gene expression and lower MYH7/MYH6 ratio correlated with different contraction kinetics in knockout versus wild-type; (2) Aberrant activation of the glucose/lipid metabolism regulator peroxisome proliferator-activated receptor gamma was associated with accumulation of lipid vacuoles within knockout cardiomyocytes; (3) Hypoxia-inducible factor 1α protein instability was associated with impaired glucose metabolism and lower glycolytic enzyme expression, rendering knockout-engineered heart tissue sensitive to metabolic stress such as serum withdrawal and restrictive feeding. Conclusion: The results suggest an important role of DNA methylation in the normal homeostasis of cardiomyocytes and during cardiac stress, which could make it an interesting target for cardiac therapy.


2021 ◽  
pp. 102649
Author(s):  
Bastien Cimarosti ◽  
Robin Canac ◽  
Aurore Girardeau ◽  
Marine Arnaud ◽  
Quentin Francheteau ◽  
...  

2014 ◽  
Vol 278 (1) ◽  
pp. 72-77 ◽  
Author(s):  
Yumiko Nozaki ◽  
Yayoi Honda ◽  
Shinji Tsujimoto ◽  
Hitoshi Watanabe ◽  
Takeshi Kunimatsu ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 487 ◽  
Author(s):  
Kaoru Uesugi ◽  
Fumiaki Shima ◽  
Ken Fukumoto ◽  
Ayami Hiura ◽  
Yoshinari Tsukamoto ◽  
...  

In this report, we propose a micro vacuum chuck (MVC) which can connect three-dimensional (3D) tissues to a tensile test system by vacuum pressure. Because the MVC fixes the 3D tissue by vacuum pressure generated on multiple vacuum holes, it is expected that the MVC can fix 3D tissue to the system easily and mitigate the damage which can happen by handling during fixing. In order to decide optimum conditions for the size of the vacuum holes and the vacuum pressure, various sized vacuum holes and vacuum pressures were applied to a normal human cardiac fibroblast 3D tissue. From the results, we confirmed that a square shape with 100 µm sides was better for fixing the 3D tissue. Then we mounted our developed MVCs on a specially developed tensile test system and measured the bio-mechanical property (beating force) of cardiac 3D tissue which was constructed of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM); the 3D tissue had been assembled by the layer-by-layer (LbL) method. We measured the beating force of the cardiac 3D tissue and confirmed the measured force followed the Frank-Starling relationship. This indicates that the beating property of cardiac 3D tissue obtained by the LbL method was close to that of native cardiac tissue.


2020 ◽  
Author(s):  
Huaxiao Yang ◽  
Ningyi Shao ◽  
Alexandra Holmström ◽  
Xin Zhao ◽  
Tony Chour ◽  
...  

Abstract Aims Stem cell therapy has shown promise for treating myocardial infarction via re-muscularization and paracrine signalling in both small and large animals. Non-human primates (NHPs), such as rhesus macaques (Macaca mulatta), are primarily utilized in preclinical trials due to their similarity to humans, both genetically and physiologically. Currently, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are delivered into the infarcted myocardium by either direct cell injection or an engineered tissue patch. Although both approaches have advantages in terms of sample preparation, cell–host interaction, and engraftment, how the iPSC-CMs respond to ischaemic conditions in the infarcted heart under these two different delivery approaches remains unclear. Here, we aim to gain a better understanding of the effects of hypoxia on iPSC-CMs at the transcriptome level. Methods and results NHP iPSC-CMs in both monolayer culture (2D) and engineered heart tissue (EHT) (3D) format were exposed to hypoxic conditions to serve as surrogates of direct cell injection and tissue implantation in vivo, respectively. Outcomes were compared at the transcriptome level. We found the 3D EHT model was more sensitive to ischaemic conditions and similar to the native in vivo myocardium in terms of cell–extracellular matrix/cell–cell interactions, energy metabolism, and paracrine signalling. Conclusion By exposing NHP iPSC-CMs to different culture conditions, transcriptome profiling improves our understanding of the mechanism of ischaemic injury.


Sign in / Sign up

Export Citation Format

Share Document