scholarly journals Human RyR2 (Ryanodine Receptor 2) Loss-of-Function Mutations

2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Yanhui Li ◽  
Jinhong Wei ◽  
Wenting Guo ◽  
Bo Sun ◽  
John Paul Estillore ◽  
...  

Background: The overall objective of the present study is to extend our understanding of the clinical phenotype and underlying mechanism of a newly discovered cardiac arrhythmia syndrome through a multicenter study. Gain-of-function mutations in the cardiac Ca 2+ release channel (RyR2 [ryanodine receptor 2]) cause catecholaminergic polymorphic ventricular tachycardia, whereas loss-of-function RyR2 mutations are linked to a new cardiac arrhythmia disorder termed Ca 2+ -release deficiency syndrome (CRDS). Catecholaminergic polymorphic ventricular tachycardia is an inherited arrhythmia disorder characterized by stress-induced bidirectional and polymorphic ventricular tachyarrhythmias and is routinely diagnosed by using exercise stress testing. Conversely, RyR2-CRDS is characterized by ventricular arrhythmias and sudden cardiac death but a negative exercise stress testing for catecholaminergic polymorphic ventricular tachycardia. There are currently no clinical diagnostic tests for CRDS and affected patients may manifest with sudden cardiac death as their first symptom. In the absence of effective clinical diagnostic tools, in vitro functional characterization of associated RyR2 mutations provides an alternative means to identify potential cases of CRDS. Methods: We searched for patients presenting with phenotypes compatible with CRDS that have RyR2 mutations and performed in vitro functional characterization. Results: We found that 3 novel (G570D, R4147K, and A4203V) and 2 previously reported (M4109R and A4204V) RyR2 mutations associated with CRDS phenotypes markedly reduced caffeine-induced Ca 2+ release and store overload-induced Ca 2+ release. We also characterized 2 additional loss-of-function RyR2 mutations previously reported (Q3925E and L4769S) that are located in the central and channel pore-forming domains critical for Ca 2+ activation and channel gating. Q3925E was identified through postmortem genetic testing in an individual who died suddenly, while L4769S is a variant of uncertain significance reported in ClinVar, suggesting that RyR2 CRDS may be under detected. Conclusions: These findings provide further support for the existence of an emerging RyR2 loss-of-function associated arrhythmia syndrome (CRDS) and shed new insights into the disease mechanism.

2019 ◽  
Vol 2019 ◽  
pp. 1-3
Author(s):  
Taishi Fujisawa ◽  
Yoshiyasu Aizawa ◽  
Yoshinori Katsumata ◽  
Akihiro Udo ◽  
Shogo Ito ◽  
...  

A 62-year-old female had suffered from recurrent syncopal episodes triggered by physical and emotional stress since childhood. She had no family history of sudden death. An intensive examination could not detect any structural disease, and exercise stress testing provoked polymorphic ventricular ectopy followed by polymorphic ventricular tachycardia accompanied with syncope leading to a diagnosis of catecholaminergic polymorphic ventricular tachycardia (CPVT). A genetic analysis with a next generation sequencer identified a homozygous W361X mutation in the CASQ2 gene. Careful history taking disclosed that her parents had a consanguineous marriage. Here we present a Japanese patient with a recessive form of CPVT.


2016 ◽  
Vol 5 (1) ◽  
pp. 45 ◽  
Author(s):  
Krystien VV Lieve ◽  
◽  
Arthur A Wilde ◽  
Christian van der Werf ◽  
◽  
...  

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare but severe genetic cardiac arrhythmia disorder, with symptoms including syncope and sudden cardiac death due to polymorphic VT or ventricular fibrillation typically triggered by exercise or emotions in the absence of structural heart disease. The cornerstone of medical therapy for CPVT is β -blockers. However, recently flecainide has been added to the therapeutic arsenal for CPVT. In this review we summarise current data on the efficacy and role of flecainide in the treatment of CPVT.


Sign in / Sign up

Export Citation Format

Share Document