Recuperation of Vascular Homeostasis

2021 ◽  
Vol 129 (2) ◽  
pp. 237-239
Author(s):  
Andrea Huwiler ◽  
Josef Pfeilschifter
Keyword(s):  
2020 ◽  
Vol 134 (17) ◽  
pp. 2399-2418
Author(s):  
Yoshito Yamashiro ◽  
Hiromi Yanagisawa

Abstract Blood vessels are constantly exposed to mechanical stimuli such as shear stress due to flow and pulsatile stretch. The extracellular matrix maintains the structural integrity of the vessel wall and coordinates with a dynamic mechanical environment to provide cues to initiate intracellular signaling pathway(s), thereby changing cellular behaviors and functions. However, the precise role of matrix–cell interactions involved in mechanotransduction during vascular homeostasis and disease development remains to be fully determined. In this review, we introduce hemodynamics forces in blood vessels and the initial sensors of mechanical stimuli, including cell–cell junctional molecules, G-protein-coupled receptors (GPCRs), multiple ion channels, and a variety of small GTPases. We then highlight the molecular mechanotransduction events in the vessel wall triggered by laminar shear stress (LSS) and disturbed shear stress (DSS) on vascular endothelial cells (ECs), and cyclic stretch in ECs and vascular smooth muscle cells (SMCs)—both of which activate several key transcription factors. Finally, we provide a recent overview of matrix–cell interactions and mechanotransduction centered on fibronectin in ECs and thrombospondin-1 in SMCs. The results of this review suggest that abnormal mechanical cues or altered responses to mechanical stimuli in EC and SMCs serve as the molecular basis of vascular diseases such as atherosclerosis, hypertension and aortic aneurysms. Collecting evidence and advancing knowledge on the mechanotransduction in the vessel wall can lead to a new direction of therapeutic interventions for vascular diseases.


2022 ◽  
Vol 23 (2) ◽  
pp. 867
Author(s):  
Sebastian F. Mause ◽  
Elisabeth Ritzel ◽  
Annika Deck ◽  
Felix Vogt ◽  
Elisa A. Liehn

Endothelial progenitor cells (EPCs) are involved in vascular repair and modulate properties of smooth muscle cells (SMCs) relevant for their contribution to neointima formation following injury. Considering the relevant role of the CXCL12–CXCR4 axis in vascular homeostasis and the potential of EPCs and SMCs to release CXCL12 and express CXCR4, we analyzed the engagement of the CXCL12–CXCR4 axis in various modes of EPC–SMC interaction relevant for injury- and lipid-induced atherosclerosis. We now demonstrate that the expression and release of CXCL12 is synergistically increased in a CXCR4-dependent mechanism following EPC–SMC interaction during co-cultivation or in response to recombinant CXCL12, thus establishing an amplifying feedback loop Additionally, mechanical injury of SMCs induces increased release of CXCL12, resulting in enhanced CXCR4-dependent recruitment of EPCs to SMCs. The CXCL12–CXCR4 axis is crucially engaged in the EPC-triggered augmentation of SMC migration and the attenuation of SMC apoptosis but not in the EPC-mediated increase in SMC proliferation. Compared to EPCs alone, the alliance of EPC–SMC is superior in promoting the CXCR4-dependent proliferation and migration of endothelial cells. When direct cell–cell contact is established, EPCs protect the contractile phenotype of SMCs via CXCL12–CXCR4 and reverse cholesterol-induced transdifferentiation toward a synthetic, macrophage-like phenotype. In conclusion we show that the interaction of EPCs and SMCs unleashes a CXCL12–CXCR4-based autoregulatory feedback loop promoting regenerative processes and mediating SMC phenotype control to potentially guard vascular homeostasis.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Susan M Majka ◽  
David Case ◽  
Charles Ivestor ◽  
Masa Imamura ◽  
Mark Roedersheimer ◽  
...  

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Vigneshwaran Vellingiri ◽  
Vijay Avin B.R. ◽  
Jagdish Chandra Joshi ◽  
Dolly Mehta
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document