Abstract 350: Assessment of Clinicians’ Attitudes and Knowledge About Cardiac Troponin Testing

2020 ◽  
Vol 13 (Suppl_1) ◽  
Author(s):  
Sandeep Jain ◽  
Andrew Hammes ◽  
Eric Rudofker ◽  
Karen Ream ◽  
Andrew E Levy

In the United States, the positive predictive value (PPV) of cardiac troponin for type 1 myocardial infarction is substantially lower than in Europe (15% vs. 50%). Further, even with publication of the 4 th Universal Definition of Myocardial Infarction, recent studies have shown that inaccurate classification of myocardial injury is common among clinicians in the United States. These findings are at least partly attributable to clinicians’ knowledge and attitudes about cardiac troponin testing; a survey of these parameters has never been conducted. Clinicians at the University of Colorado completed a brief 8-question multiple-choice survey related to troponin use, definitions of myocardial infarction and clinical assessment of elevated troponin levels. The survey was distributed via secure email and administered electronically using the Qualtrics™ platform. Responses were anonymous, completion was estimated to take 3 minutes and a lottery award system was used as an incentive for participation. Respondents included trainees, advanced practice providers and attending physicians from internal medicine, emergency medicine and medical subspecialties. We plan to obtain a total of 300 responses with descriptive findings of preliminary results included below. The survey was completed by 114 clinicians: 37 interns (32%), 45 residents (39%), 9 advanced practice providers (8%), 11 fellows (10%), and 12 attending physicians (11%). Regarding indications for troponin testing, 93% (106/114) indicated that they “usually” or “always” check troponin levels in patients with chest pain. More interestingly, 46% (52/112) reported checking troponin on “undifferentiated patients” at least half the time. For troponin interpretation, 97% (110/114) of participants identified that troponin levels alone cannot rule in or rule out coronary artery disease. In contrast, only 36% (41/114) and 55% (63/114), respectively, identified the NPV and PPV of a contemporary troponin assay for type 1 MI. Further, only 50% (57/114) of respondents identified that the likelihood of type 1 MI increases as troponin levels increase. Three brief clinical vignettes revealed that, while 78% (89/114) and 74% (45/61) of participants, respectively, identified type 1 MI and type 2 MI presentations, only 40% (21/53) of respondents correctly identified a vignette for non-ischemic myocardial injury. Concordant with this finding, 54% (61/114) of clinicians correctly identified the 4 th Universal Definition of Myocardial Infarction. These preliminary findings highlight important facets of clinician attitudes and knowledge about troponin testing that help explain the poor PPV for troponin and diagnostic misclassification observed among U.S. clinicians. These results could help guide curricular and clinical decision support interventions designed to improve the use and interpretation of cardiac troponin testing.

Circulation ◽  
2020 ◽  
Vol 141 (3) ◽  
pp. 161-171 ◽  
Author(s):  
Andrew R. Chapman ◽  
Philip D. Adamson ◽  
Anoop S.V. Shah ◽  
Atul Anand ◽  
Fiona E. Strachan ◽  
...  

Background: The introduction of more sensitive cardiac troponin assays has led to increased recognition of myocardial injury in acute illnesses other than acute coronary syndrome. The Universal Definition of Myocardial Infarction recommends high-sensitivity cardiac troponin testing and classification of patients with myocardial injury based on pathogenesis, but the clinical implications of implementing this guideline are not well understood. Methods: In a stepped-wedge cluster randomized, controlled trial, we implemented a high-sensitivity cardiac troponin assay and the recommendations of the Universal Definition in 48 282 consecutive patients with suspected acute coronary syndrome. In a prespecified secondary analysis, we compared the primary outcome of myocardial infarction or cardiovascular death and secondary outcome of noncardiovascular death at 1 year across diagnostic categories. Results: Implementation increased the diagnosis of type 1 myocardial infarction by 11% (510/4471), type 2 myocardial infarction by 22% (205/916), and acute and chronic myocardial injury by 36% (443/1233) and 43% (389/898), respectively. Compared with those without myocardial injury, the rate of the primary outcome was highest in those with type 1 myocardial infarction (cause-specific hazard ratio [HR] 5.64 [95% CI, 5.12–6.22]), but was similar across diagnostic categories, whereas noncardiovascular deaths were highest in those with acute myocardial injury (cause specific HR 2.65 [95% CI, 2.33–3.01]). Despite modest increases in antiplatelet therapy and coronary revascularization after implementation in patients with type 1 myocardial infarction, the primary outcome was unchanged (cause specific HR 1.00 [95% CI, 0.82–1.21]). Increased recognition of type 2 myocardial infarction and myocardial injury did not lead to changes in investigation, treatment or outcomes. Conclusions: Implementation of high-sensitivity cardiac troponin assays and the recommendations of the Universal Definition of Myocardial Infarction identified patients at high-risk of cardiovascular and noncardiovascular events but was not associated with consistent increases in treatment or improved outcomes. Trials of secondary prevention are urgently required to determine whether this risk is modifiable in patients without type 1 myocardial infarction. Clinical Trial Registration: https://www.clinicaltrials.gov . Unique identifier: NCT01852123.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yader Sandoval ◽  
Stephen W Smith ◽  
Karen M Schulz ◽  
MaryAnn M Murakami ◽  
Fred S Apple

Introduction: High-sensitivity cardiac troponin (hs-cTn) assays have not yet been FDA cleared for clinical use in the United States (US). Pending expected approval of hs-cTn assays, which will use gender-specific cutoffs (GSC), it is relevant to recognize the causes of cTn increases using hs-cTnI assays in a US population. Our purpose was to describe the frequency of distinct etiologies of hs-cTnI assay increases using GSC. Methods: Retrospective study of 310 patients with serial hs-cTnI (Abbott ARCHITECT, 99th percentiles: F:16 ng/L; M:34 ng/L) measurements. Patients with an increased hs-cTnI were adjudicated into categories according to the 3rd Universal Definition of MI. Categories included, A: primary myocardial ischemia (i.e. plaque rupture); B: injury secondary to supply/demand imbalance; C: injury not related to myocardial ischemia (i.e. cardiac contusion, ablation, shock, surgery); D: multifactorial or indeterminate myocardial injury (i.e. heart failure, critically ill, pulmonary HTN, sepsis, stroke, renal failure, pulmonary embolism); E: Unknown. Results: 127 (41%) had an increased hs-cTnI above the GSC 99th percentile, whereas 183 (59%) had a normal hs-cTnI. The most common causes of hs-cTnI increases were: a) multifactorial or indeterminate injury - 43% among all patients and 52% in males, and b) supply/demand imbalance - 39% in women (Table). Injury related to primary myocardial ischemia was present in 10% (n=13). Females had more injury related to supply/demand ischemia than males (39% vs. 18%, p=0.01), whereas males had more multifactorial or indeterminate injury (52% vs. 33%, p=0.05). Conclusions: Most increased hs-cTnI values were explained by non-plaque rupture conditions. Males tended to have hs-cTnI increases due to multifactorial/indeterminate causes, whereas in women supply/demand imbalance was the most common etiology. Investigations are needed to better understand if etiologies of myocardial injury have gender differences.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A R Chapman ◽  
P D Adamson ◽  
A Anand ◽  
A S V Shah ◽  
K K Lee ◽  
...  

Abstract Background The Universal Definition of Myocardial Infarction recommends the 99th centile diagnostic threshold using a high-sensitivity cardiac troponin (hs-cTn) assay and the classification of patients by the etiology of myocardial injury. Whether implementation of this definition improves risk stratification, treatment or outcomes is unknown. Methods In a stepped-wedge cluster randomized controlled trial, we implemented a high-sensitivity troponin assay and the recommendations of the Universal Definition in 48,282 consecutive patients with suspected acute coronary syndrome across ten hospitals. In a pre-specified secondary analysis, we compared the primary outcome of myocardial infarction or cardiovascular death, and secondary outcome of non-cardiovascular death at one year across diagnostic categories as per the Fourth Universal Definition. We applied competing risks methodology in all analyses, using a cumulative incidence function and determining the cause-specific hazard ratio (csHR) for competing outcomes. Results Cardiac troponin concentrations were elevated in 21.5% (10,360/48,282) of all trial participants. Implementation increased the diagnosis of type 1 myocardial infarction by 11% (510/4,471), type 2 myocardial infarction by 22% (205/916), acute myocardial injury by 36% (443/1,233) and chronic myocardial injury by 43% (389/898). The risk and rate of the primary outcome was highest in those with type 1 myocardial infarction, whereas the risk and rate of non-cardiovascular death was highest in those with acute myocardial injury (Table, Figure). Despite increases in anti-platelet therapy and coronary revascularization after implementation, the primary outcome was unchanged in patients with type 1 myocardial infarction (csHR 1.00, 95% CI 0.82 to 1.21), or in any other category. Adjusted csHR for competing outcomes Myocardial infarction or cardiovascular death Non-cardiovascular death Adjusted csHR (95% CI) Adjusted csHR (95% CI) Type 1 myocardial infarction 5.64 (5.12 to 6.22) 0.83 (0.72 to 0.96) Type 2 myocardial infarction 3.50 (2.94 to 4.15) 1.72 (1.44 to 2.06) Acute myocardial injury 4.38 (3.80 to 5.05) 2.65 (2.33 to 3.00) Chronic myocardial injury 3.88 (3.31 to 4.55) 2.06 (1.77 to 2.40) Cox regression models adjusted for age, sex, diabetes, ischaemic heart disease, season, days since trial onset and site of recruitment (as a random effect). Cumulative incidence and number at risk Conclusions Implementation of the recommendations of the Universal Definition identified patients with different risks of future cardiovascular and non-cardiovascular events, but did not improve outcomes. Greater understanding of the underlying mechanisms and effective strategies for the investigation and treatment of patients with myocardial injury and infarction are required if we are to improve outcomes. Acknowledgement/Funding British Heart Foundation


2015 ◽  
Vol 61 (4) ◽  
pp. 657-663 ◽  
Author(s):  
Yader Sandoval ◽  
Stephen W Smith ◽  
Karen M Schulz ◽  
MaryAnn M Murakami ◽  
Sara A Love ◽  
...  

Abstract BACKGROUND The frequency and characteristics of myocardial infarction (MI) subtypes per the Third Universal Definition of MI (TUDMI) classification system using high-sensitivity (hs) cardiac troponin assays with sex-specific cutoffs is not well known. We sought to describe the diagnostic characteristics of type 1 (T1MI) and type 2 (T2MI) MI using an hs–cardiac troponin I (hs-cTnI) assay with sex-specific cutoffs. METHODS A total of 310 consecutive patients with serial cTnI measurements obtained on clinical indication were studied with contemporary and hs-cTnI assays. Ninety-ninth percentile sex-specific upper reference limits (URLs) for the hs-cTnI assay were 16 ng/L for females and 34 ng/L for males. The TUDMI consensus recommendations were used to define and adjudicate MI based on each URL. RESULTS A total of 127 (41%) patients had at least 1 hs-cTnI exceeding the sex-specific 99th percentiles, whereas 183 (59%) had hs-cTnI within the reference interval. Females had more myocardial injury related to supply/demand ischemia than males (39% vs 18%, P = 0.01), whereas males had more multifactorial or indeterminate injury (52% vs 33%, P = 0.05). By hs-cTnI, there were 32 (10%) acute MIs, among which 10 (3%) were T1MI and 22 (7%) were T2MI. T2MI represented 69% (22 out of 32) of all acute MIs, whereas T1MI represented 31% (10 out of 32). Ninety-five patients (31%) had an increased hs-cTnI above the 99th percentile but did not meet criteria for acute MI. The most common triggers for T2MI were tachyarrhythmias, hypotension/shock, and hypertension. By contemporary cTnI, more MIs (14 T1MI and 29 T2MI) were diagnosed. By contemporary cTnI, there were 43 MIs, 14 T1MI, and 29 T2MI. CONCLUSIONS Fewer MI diagnoses were found with the hs-cTnI assay, contrary to the commonly accepted idea that hs-cTnI will lead to excessive false-positive diagnoses.


2021 ◽  
Author(s):  
Thomas E Kaier ◽  
Bashir Alaour ◽  
Michael Marber

Abstract The 4th Universal Definition of Myocardial Infarction has stimulated considerable debate since its publication in 2018. The intention was to define the types of myocardial injury through the lens of their underpinning pathophysiology. In this review we discuss how the 4th Universal Definition of Myocardial Infarction defines infarction and injury and the necessary pragmatic adjustments that appear in clinical guidelines to maximise triage of real-world patients.


Heart ◽  
2018 ◽  
Vol 104 (15) ◽  
pp. 1284-1291 ◽  
Author(s):  
Anton Gard ◽  
Bertil Lindahl ◽  
Gorav Batra ◽  
Nermin Hadziosmanovic ◽  
Marcus Hjort ◽  
...  

ObjectiveThe universal definition of myocardial infarction (MI) differentiates MI due to oxygen supply/demand mismatch (type 2) from MI due to plaque rupture (type 1) as well as from myocardial injuries of non-ischaemic or multifactorial nature. The purpose of this study was to investigate how often physicians agree in this classification and what factors lead to agreement or disagreement.MethodsA total of 1328 patients diagnosed with MI at eight different Swedish hospitals 2011 were included. All patients were retrospectively reclassified into different MI or myocardial injury subtypes by two independent specially trained physicians, strictly adhering to the third universal definition of MI.ResultsOverall, there was a moderate interobserver agreement with a kappa coefficient (κ) of 0.55 in this classification. There was substantial agreement when distinguishing type 1 MI (κ: 0.61), compared with moderate agreement when distinguishing type 2 MI (κ: 0.54). In multivariate logistic regression analyses, ST elevation MI (P<0.001), performed coronary angiography (P<0.001) and larger changes in troponin levels (P=0.023) independently made the physicians agree significantly more often, while they disagreed more often with symptoms of dyspnoea (P<0.001), higher systolic blood pressure (P=0.001) and higher C reactive protein levels on admission (P=0.016).ConclusionDistinguishing MI types is challenging also for trained adjudicators. Although strictly adhering to the third universal definition of MI, differentiation between type 1 MI, type 2 MI and myocardial injury only gave a moderate rate of interobserver agreement. More precise and clinically applicable criteria for the current classification, particularly for type 2 MI diagnosis, are urgently needed.


2019 ◽  
Vol 65 (3) ◽  
pp. 484-489 ◽  
Author(s):  
Atul Anand ◽  
Anoop S V Shah ◽  
Agim Beshiri ◽  
Allan S Jaffe ◽  
Nicholas L Mills

Abstract BACKGROUND The universal definition of myocardial infarction (UDMI) standardizes the approach to the diagnosis and management of myocardial infarction. High-sensitivity cardiac troponin testing is recommended because these assays have improved precision at low concentrations, but concerns over specificity may have limited their implementation. METHODS We undertook a global survey of 1902 medical centers in 23 countries evenly distributed across 5 continents to assess adoption of key recommendations from the UDMI. Respondents involved in the diagnosis and management of patients with suspected acute coronary syndrome completed a structured telephone questionnaire detailing the primary biomarker, diagnostic thresholds, and clinical pathways used to identify myocardial infarction. RESULTS Cardiac troponin was the primary diagnostic biomarker at 96% of surveyed sites. Only 41% of centers had adopted high-sensitivity assays, with wide variation from 7% in North America to 60% in Europe. Sites using high-sensitivity troponin more frequently used serial sampling pathways (91% vs 78%) and the 99th percentile diagnostic threshold (74% vs 66%) than sites using previous-generation assays. Furthermore, high-sensitivity institutions more often used earlier serial sampling (≤3 h) and accelerated diagnostic pathways. Fewer than 1 in 5 high-sensitivity sites had adopted sex-specific thresholds (18%). CONCLUSIONS There has been global progress toward the recommendations of the UDMI, particularly in the use of the 99th percentile diagnostic threshold and serial sampling. However, high-sensitivity assays are still used by a minority of sites, and sex-specific thresholds by even fewer. Additional efforts are required to improve risk stratification and diagnosis of patients with myocardial infarction.


2017 ◽  
Vol 35 (2) ◽  
pp. 120-125 ◽  
Author(s):  
Richard Body ◽  
Edward Carlton

Cardiac troponin (cTn) is a highly specific biomarker of myocardial injury and is central to the diagnosis of acute myocardial infarction (AMI). By itself, however, cTn cannot identify the cause of myocardial injury. ‘Troponinitis’ is the condition that leads clinicians to falsely assign a diagnosis of AMI based only on the fact that a patient has an elevated cTn concentration. There are many causes of myocardial injury other than AMI. Clinicians are required to differentiate myocardial injury caused by AMI from other causes.In part 1 of this series on cTn, we provide a structured overview to help practising clinicians to interpret ‘positive’ cTn results appropriately. There are three core principles. First, when reviewing a cTn result, clinicians must carefully consider the clinical context. Only this can distinguish primary (termed type 1) AMI caused by coronary artery disease from secondary (termed type 2) AMI caused by another condition with an imbalance in the supply and demand of oxygen to the myocardium. Second, clinicians must consider the patient’s baseline condition in order to determine the presence or absence of factors that may predict a chronic cTn elevation. Third, clinicians should routinely use serial sampling to detect a change of cTn that is expected in patients with acute (rather than chronic) myocardial injury. Using these simple principles, clinicians can avoid underdiagnosis and overdiagnosis of AMI.


2018 ◽  
Author(s):  
Atul Anand ◽  
Anoop SV Shah ◽  
Agim Beshiri ◽  
Allan S Jaffe ◽  
Nicholas L Mills

AbstractImportanceThe third Universal Definition of Myocardial Infarction aimed to standardize the approach to the diagnosis and management of myocardial infarction. High-sensitivity cardiac troponin testing was recommended, as these assays have improved precision at low concentrations, but concerns over specificity may have limited implementation.ObjectiveTo determine the global adoption of high-sensitivity cardiac troponin assays and key recommendations from the Universal Definition.Design, Setting and ParticipantsGlobal survey of 1,902 medical centers across 23 countries evenly distributed across all five continents. Included respondents were involved in the diagnosis and management of patients with suspected acute coronary syndrome at their institutions.Main Outcomes and MeasuresStructured questionnaire detailing the primary biomarker used for myocardial infarction, diagnostic thresholds and critical elements of clinical pathways for comparison to the third Universal Definition recommendations.ResultsCardiac troponin was the primary diagnostic biomarker for myocardial infarction at 96% of all sites surveyed. Only 41% of centers had adopted high-sensitivity cardiac troponin assays, with wide variation from 7% in North America to 60% in Europe. Sites using high-sensitivity assays more frequently employed serial sampling pathways (91% vs. 78%) and the 99th percentile diagnostic threshold (74% vs. 66%) when compared to sites using the previous generation of troponin assays. Furthermore, sites using high-sensitivity assays more often used earlier serial sampling (≤3 hours) and accelerated diagnostic pathways. However, fewer than 1 in 5 sites using high-sensitivity assays had adopted sex-specific thresholds (18%).Conclusions and RelevanceProgress has been made in adopting the recommendations of the Universal Definition of Myocardial Infarction, particularly in the use of the 99th percentile diagnostic threshold and serial sampling. However, high-sensitivity assays are used in a minority of sites and sex-specific thresholds in even fewer. These findings highlight regions where additional efforts are required to improve the risk stratification and diagnosis of patients with myocardial infarction.


Cardiology ◽  
2015 ◽  
Vol 131 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Luis Paiva ◽  
Rui Providência ◽  
Sérgio Barra ◽  
Paulo Dinis ◽  
Ana C. Faustino ◽  
...  

Aims: The universal definition of myocardial infarction (MI) classifies acute ischaemia into different classes according to lesion mechanism. Our aim was to perform a detailed comparison between these different types of MI in terms of baseline characteristics, management and prognosis. Methods and Results: An observational retrospective single-centre cohort study was performed, including 1,000 consecutive patients admitted for type 1 (76.4%) or type 2 MI (23.6%). Type 2 MI patients were older, had a higher prevalence of comorbidities and worse medical status at admission. In-hospital mortality did not differ significantly between the MI groups (8.8 vs. 9.7%, p = 0.602). However, mortality during follow-up was almost 3 times higher in type 2 MIs (HR 2.75, p < 0.001). Type 2 MI was an independent all-cause mortality risk marker, adding discriminatory power to the GRACE model. Finally, important differences in traditional risk score performances (GRACE, CRUSADE) were found between both MI types. Conclusions: Several important baseline differences were found between these MI types. Regarding prognosis, long-term survival is significantly compromised in type 2 MIs, potentially translating patients' higher medical complexity and frailty. Distinction between type 1 and type 2 MI seems to have important implications in clinical practice and likely also in the results of clinical trials.


Sign in / Sign up

Export Citation Format

Share Document