scholarly journals Sacubitril/Valsartan Improves Cardiac Function and Decreases Myocardial Fibrosis Via Downregulation of Exosomal miR‐181a in a Rodent Chronic Myocardial Infarction Model

2020 ◽  
Vol 9 (13) ◽  
Author(s):  
Evgeniya Vaskova ◽  
Gentaro Ikeda ◽  
Yuko Tada ◽  
Christine Wahlquist ◽  
Marc Mercola ◽  
...  

Background Exosomes are small extracellular vesicles that function as intercellular messengers and effectors. Exosomal cargo contains regulatory small molecules, including mi RNA s, mRNA s, lnc RNA s, and small peptides that can be modulated by different pathological stimuli to the cells. One of the main mechanisms of action of drug therapy may be the altered production and/or content of the exosomes. Methods and Results We studied the effects on exosome production and content by neprilysin inhibitor/angiotensin receptor blockers, sacubitril/valsartan and valsartan alone, using human‐induced pluripotent stem cell‐derived cardiomyocytes under normoxic and hypoxic injury model in vitro , and assessed for physiologic correlation using an ischemic myocardial injury rodent model in vivo. We demonstrated that the treatment with sacubitril/valsartan and valsartan alone resulted in the increased production of exosomes by induced pluripotent stem cell‐derived cardiomyocytes in vitro in both conditions as well as in the rat plasma in vivo. Next‐generation sequencing of these exosomes exhibited downregulation of the expression of rno‐miR‐181a in the sacubitril/valsartan treatment group. In vivo studies employing chronic rodent myocardial injury model demonstrated that miR‐181a antagomir has a beneficial effect on cardiac function. Subsequently, immunohistochemical and molecular studies suggested that the downregulation of miR‐181a resulted in the attenuation of myocardial fibrosis and hypertrophy, restoring the injured rodent heart after myocardial infarction. Conclusions We demonstrate that an additional mechanism of action of the pleiotropic effects of sacubitril/valsartan may be mediated by the modulation of the mi RNA expression level in the exosome payload.

Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Meng Zhao ◽  
Yawen Tang ◽  
Wuqiang Zhu ◽  
Jianyi Zhang

Introduction: Stem-cell-based therapies provide promise for the treatment of ischemic myocardial injury, but the number of cells that remain engrafted at the site of administration is exceptionally low, which is believed to limit the effectiveness of treatment. In this study, we investigated whether the number of engrafted human induced-pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) can be increased via overexpression of the cell-cycle activator cyclin D2 (CCND2) and if so, whether this increase is accompanied by improvements in myocardial recovery. Experiments were conducted in a large-animal (swine) model of myocardial injury. Methods and results: CCND2-overexpressing hiPSC-CMs (CCND2 OE CMs) were constructed via lentiviral transfection; then, myocardial infarction (MI) was surgically induced in swine, and the animals were randomly assigned to treatment with CCND2 OE CMs (i.e., the MI+CCND2 OE CM group), wild-type hiPSC-CMs (the MI+CCND2 WT CM group), or neither experimental treatment (the MI group); the cells were injected into five sites (6х10 6 cells/site) surrounding the infarct. Four weeks after MI, measurements of the heart-weight to bodyweight ratio (HW/BW), cardiac function (determined via magnetic resonance imaging), and vascularity (CD31 staining) were significantly better in MI+CCND2 OE CM animals than in the CCND2 WT CM group. HW/BW was also significantly lower in both cell-treatment groups than in MI animals, and CCND2 overexpression was associated with increases in both hiPSC-CM engraftment (mRNA levels) and cell-cycle activity (ki67 and phosphorylated histone 3 levels). Conclusion: Experiments in a large-animal MI model indicated that CCND2 overexpression in transplanted hiPSC-CMs was associated with increases in cell-cycle activity and the number of engrafted cells, as well as improvements in cardiac function, hypertrophy, and vascularity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriel Peinkofer ◽  
Martina Maass ◽  
Kurt Pfannkuche ◽  
Agapios Sachinidis ◽  
Stephan Baldus ◽  
...  

Abstract Background Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) are regarded as promising cell type for cardiac cell replacement therapy, but it is not known whether the developmental stage influences their persistence and functional integration in the host tissue, which are crucial for a long-term therapeutic benefit. To investigate this, we first tested the cell adhesion capability of murine iPSC-CM in vitro at three different time points during the differentiation process and then examined cell persistence and quality of electrical integration in the infarcted myocardium in vivo. Methods To test cell adhesion capabilities in vitro, iPSC-CM were seeded on fibronectin-coated cell culture dishes and decellularized ventricular extracellular matrix (ECM) scaffolds. After fixed periods of time, stably attached cells were quantified. For in vivo experiments, murine iPSC-CM expressing enhanced green fluorescent protein was injected into infarcted hearts of adult mice. After 6–7 days, viable ventricular tissue slices were prepared to enable action potential (AP) recordings in transplanted iPSC-CM and surrounding host cardiomyocytes. Afterwards, slices were lysed, and genomic DNA was prepared, which was then used for quantitative real-time PCR to evaluate grafted iPSC-CM count. Results The in vitro results indicated differences in cell adhesion capabilities between day 14, day 16, and day 18 iPSC-CM with day 14 iPSC-CM showing the largest number of attached cells on ECM scaffolds. After intramyocardial injection, day 14 iPSC-CM showed a significant higher cell count compared to day 16 iPSC-CM. AP measurements revealed no significant difference in the quality of electrical integration and only minor differences in AP properties between d14 and d16 iPSC-CM. Conclusion The results of the present study demonstrate that the developmental stage at the time of transplantation is crucial for the persistence of transplanted iPSC-CM. iPSC-CM at day 14 of differentiation showed the highest persistence after transplantation in vivo, which may be explained by a higher capability to adhere to the extracellular matrix.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Wenyi Chen ◽  
Johannes Riegler ◽  
Elena Matsa ◽  
Qi Shen ◽  
Haodi Wu ◽  
...  

Introduction: Both human embryonic stem cell-derived cardiomyocytes (ESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can serve as an unlimited cell source for cardiac regenerative therapy. However, the functional equivalency of both approaches has not been previously reported. Here we performed head-to-head comparison on the beneficial effects of ESC-CM and iPSC-CMs in restoring cardiac function in a rat myocardial infarction (MI) model. Methods & Results: Human ESCs and iPSCs were differentiated into cardiomyocytes using small molecules. FACS analysis confirmed ~85% and ~83% of cells differentiated from ESCs and iPSCs, respectively, were positive for cardiac troponin T, and immunofluorescence staining demonstrated that ESC-CMs and iPSC-CMs have striated sarcomeric structure (Figure A-B). Both ESC-CMs and iPSC-CMs displayed similar maturity for calcium handling (transient amplitude: ΔF/F 0 = 3.8±0.3; time to peak: ~200 ms; 50% transient duration: ~400 ms). qRT-PCR showed that ESC-CMs and iPSC-CMs expressed CASQ2, GJA5, KCNJ2, KCNJ5, MYH6, MYH7, and SCN5A at comparable levels to human fetal heart tissue. Next, ESC-CMs and iPSC-CMs were injected into the left ventricular free wall of infarcted hearts (adult nude rats; n=14, 10, respectively). Cardiac function was assessed by MRI one month post cell injection and the hearts were harvested and stained for human cardiac markers. Both ESC-CMs and iPSC-CMs could engraft in ischemic rat hearts (Figure C). Comprehensive functional analysis with small animal magnetic resonance imaging (MRI), echocardiography, and pressure-volume loop analysis are underway. Conclusion: We set out to perform head to head comparison for the first time that iPSC-CMs may facilitate cardiac repair at comparable levels to ESC-CMs. Unlike allogeneic ESC-CM therapy, autologous iPSC-CMs could be used to overcome immune rejection for cardiac cell transplantation in the future.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0245571
Author(s):  
Junya Yokoyama ◽  
Shigeru Miyagawa ◽  
Takami Akagi ◽  
Mitsuru Akashi ◽  
Yoshiki Sawa

The extracellular matrix (ECM) plays a key role in the viability and survival of implanted human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We hypothesized that coating of three-dimensional (3D) cardiac tissue-derived hiPSC-CMs with the ECM protein fibronectin (FN) would improve the survival of transplanted cells in the heart and improve heart function in a rat model of ischemic heart failure. To test this hypothesis, we first explored the tolerance of FN-coated hiPSC-CMs to hypoxia in an in vitro study. For in vivo assessments, we constructed 3D-hiPSC cardiac tissues (3D-hiPSC-CTs) using a layer-by-layer technique, and then the cells were implanted in the hearts of a myocardial infarction rat model (3D-hiPSC-CTs, n = 10; sham surgery control group (without implant), n = 10). Heart function and histology were analyzed 4 weeks after transplantation. In the in vitro assessment, cell viability and lactate dehydrogenase assays showed that FN-coated hiPSC-CMs had improved tolerance to hypoxia compared with the control cells. In vivo, the left ventricular ejection fraction of hearts implanted with 3D-hiPSC-CT was significantly better than that of the sham control hearts. Histological analysis showed clear expression of collagen type IV and plasma membrane markers such as desmin and dystrophin in vivo after implantation of 3D-hiPSC-CT, which were not detected in 3D-hiPSC-CMs in vitro. Overall, these results indicated that FN-coated 3D-hiPSC-CT could improve distressed heart function in a rat myocardial infarction model with a well-expressed cytoskeletal or basement membrane matrix. Therefore, FN-coated 3D-hiPSC-CT may serve as a promising replacement for heart transplantation and left ventricular assist devices and has the potential to improve survivability and therapeutic efficacy in cases of ischemic heart disease.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Olivia T Ly ◽  
Grace Brown ◽  
Hanna Chen ◽  
Liang Hong ◽  
Xinge Wang ◽  
...  

Introduction: The limited success of pharmacological approaches to atrial fibrillation ( AF ) is due to limitations of in vitro and in vivo models and inaccessibility of human atrial tissue. Patient-specific induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) are a robust platform to model the heterogeneous myocardial substrate of AF, but their immaturity limits their fidelity. Objective: We hypothesized that a combinatorial approach of biochemical (triiodothyronine [ T3 ], insulin-like growth factor-1 [ IGF-1 ], and dexamethasone; collectively TID ), bioenergetic (fatty acids [ FA ]), and electrical stimulation ( ES ) will enhance electrophysiological ( EP ), structural, and metabolic maturity of iPSC- a CMs. Methods: We assessed maturation with whole cell patch clamping, calcium transients, immunofluorescence (IF), Seahorse Analyzer, contractility assay, RT-PCR, Western Blotting, and RNA sequencing (RNAseq). Using a time series with RNAseq we identified signaling pathways and transcriptional regulation that drive EP, structural, and metabolic atrial development and compared iPSC-aCM maturity with human aCMs (haCMs) obtained from the same patient. Results: TID+FA+ES significantly improved structural organization and cell morphology ( Fig. 1a ), enhanced membrane potential stability and improved depolarization ( Fig. 1b ), improved Ca 2+ kinetics with faster and increased Ca 2+ release from sarcoplasmic reticulum ( Fig. 1c ), and increased expression of Na + , Ca 2+ , and K + channels, markers of structural maturity, FA metabolism, and oxidative phosphorylation ( Fig. 1d ). There was no difference in each parameter between TID+FA+ES iPSC-aCMs and haCMs from the same patient. Conclusion: Our optimized, combinatorial TID+FA+ES approach markedly enhanced EP, structural, and metabolic maturity of human iPSC-aCMs, which will be useful for elucidating the genetic basis of AF developing precision drug therapies.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Takeshi Hatani ◽  
Shunsuke Funakoshi ◽  
Thomas J Deerinck ◽  
Eric A Bushong ◽  
Takeshi Kimura ◽  
...  

Background: Although studies have feasibility of in vivo cardiac transplantation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) in animal experiments, nano-structural confirmation of the successful incorporation of the engrafted iPSC-CMs including electron microscopy (EM) has not been accomplished, partly because identification of graft cells in EM has proven to be difficult. However, with a new genetically encoded probe, the monomeric 28-kDa peroxidase reporter 2 (APEX2), which withstands strong EM fixation, this problem can now be done. We have now been able to test whether APEX2 can identify iPSC-CMs in host heart after long-term engrafting, and evaluate the engrafted iPSC-CMs in post-myocardial infarction using EM. Methods: We established human iPSC lines which stably expressed histone H2B-APEX2 (APEX2 iPSCs). After differentiating APEX2 iPSCs into CM in vitro, purified cells were transplanted into NOG mouse hearts with myocardial infarction by direct injections into the myocardium. One and 3 months after transplantation, we mapped engraft iPS-CMs using high resolution micro-CT and evaluated their ultrastructure by EM. Results: APEX2 was stably expressed and labeled histone H2B in iPSCs before and after in vitro differentiation into CM. Graft efficiency of APEX2 iPSC-CMs in NOG heart was excellent and APEX2 expression sustained over 3 months in vivo . APEX2 reaction observed in EM clearly identified engrafted APEX2 iPSC-CMs in niches surrounded by host CMs and their physical interaction was visualized. EM also revealed a progression in the maturation of sarcomeric structure and mitochondria in engrafted iPSC-CMs, by comparing data at 1 and 3 months after transplantation. Conclusion: We demonstrate that APEX2 is a versatile genetic reporter to trace cell fates in living animals over many months. Using APEX2-based staining, we were able to identify and characterize the maturation process of iPSC-CMs, and determine how they distribute within myocardial niches, as well as their interaction with host CMs. This method should be useful to many studies of stem cell-based cell replacement therapy, as it allows both tracking of cells and the ultrastructural characterization of engrafted cell and graft-host interactions.


2021 ◽  
pp. 1-14
Author(s):  
Satoe Hiramatsu ◽  
Asuka Morizane ◽  
Tetsuhiro Kikuchi ◽  
Daisuke Doi ◽  
Kenji Yoshida ◽  
...  

Background: Pluripotent stem cell (PSC)-derived dopaminergic (DA) neurons are an expected source of cell therapy for Parkinson’s disease. The transplantation of cell aggregates or neurospheres, instead of a single cell suspension has several advantages, such as keeping the 3D structure of the donor cells and ease of handling. For this PSC-based therapy to become a widely available treatment, cryopreservation of the final product is critical in the manufacturing process. However, cryopreserving cell aggregates is more complicated than cryopreserving single cell suspensions. Previous studies showed poor survival of the DA neurons after the transplantation of cryopreserved fetal ventral-mesencephalic tissues. Objective: To achieve the cryopreservation of induced pluripotent stem cell (iPSC)-derived DA neurospheres toward clinical application. Methods: We cryopreserved iPSC-derived DA neurospheres in various clinically applicable cryopreservation media and freezing protocols and assessed viability and neurite extension. We evaluated the population and neuronal function of cryopreserved cells by the selected method in vitro. We also injected the cells into 6-hydroxydopamine (6-OHDA) lesioned rats, and assessed their survival, maturation and function in vivo. Results: The iPSC-derived DA neurospheres cryopreserved by Proton Freezer in the cryopreservation medium Bambanker hRM (BBK) showed favorable viability after thawing and had equivalent expression of DA-specific markers, dopamine secretion, and electrophysiological activity as fresh spheres. When transplanted into 6-OHDA-lesioned rats, the cryopreserved cells survived and differentiated into mature DA neurons, resulting in improved abnormal rotational behavior. Conclusion: These results show that the combination of BBK and Proton Freezer is suitable for the cryopreservation of iPSC-derived DA neurospheres.


Author(s):  
Takaaki Samura ◽  
Shigeru Miyagawa ◽  
Takuji Kawamura ◽  
Satsuki Fukushima ◽  
Jun‐ya Yokoyama ◽  
...  

Background Extracellular matrix, especially laminin‐221, may play crucial roles in viability and survival of human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPS‐CMs) after in vivo transplant. Then, we hypothesized laminin‐221 may have an adjuvant effect on therapeutic efficacy by enhancing cell viability and survival after transplantation of 3‐dimensional engineered cardiac tissue (ECT) to a rat model of myocardial infarction. Methods and Results In vitro study indicates the impacts of laminin‐221 on hiPS‐CMs were analyzed on the basis of mechanical function, mitochondrial function, and tolerance to hypoxia. We constructed 3‐dimensional ECT containing hiPS‐CMs and fibrin gel conjugated with laminin‐221. Heart function and in vivo behavior were assessed after engraftment of 3‐dimensional ECT (laminin‐conjugated ECT, n=10; ECT, n=10; control, n=10) in a rat model of myocardial infarction. In vitro assessment indicated that laminin‐221 improves systolic velocity, diastolic velocity, and maximum capacity of oxidative metabolism of hiPS‐CMs. Cell viability and lactate dehydrogenase production revealed that laminin‐221 improved tolerance to hypoxia. Furthermore, analysis of mRNA expression revealed that antiapoptotic genes were upregulated in the laminin group under hypoxic conditions. Left ventricular ejection fraction of the laminin‐conjugated ECT group was significantly better than that of other groups 4 weeks after transplantation. Laminin‐conjugated ECT transplantation was associated with significant improvements in expression levels of rat vascular endothelial growth factor. In early assessments, cell survival was also improved in laminin‐conjugated ECTs compared with ECT transplantation without laminin‐221. Conclusions In vitro laminin‐221 enhanced mechanical and metabolic function of hiPS‐CMs and improved the therapeutic impact of 3‐dimensional ECT in a rat ischemic cardiomyopathy model. These findings suggest that adjuvant laminin‐221 may provide a clinical benefit to hiPS‐CM constructs.


Sign in / Sign up

Export Citation Format

Share Document