Abstract 200: Hypercoagulabilty Panel Testing in Neonates Undergoing Cardiac Surgery

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Sirisha Emani ◽  
David Zurakowski ◽  
Christopher Baird ◽  
Frank Pigula ◽  
Trenor Cameron ◽  
...  

Thrombosis is a crucial contributor of morbidity and mortality in neonates undergoing cardiac surgery. Although there is published data on several factors of the hemastatic system, there is no data correlating factor expression and/or function with thrombosis in neonates. We tested the hypothesis that hypercoagulability markers are predictive of thrombosis in neonates undergoing cardiac surgery. Sixty neonates undergoing cardiac surgery were tested for thrombin generation assay; coagulation factors; antithrombin III, protein C, protein S, and factor VIII; fibrinolytic inhibitors; thrombin-activatable fibrinolytic inhibitor, plasminogen activator inhibitor; and presence of cardiolipin antibodies by immunoassays. Factor V Leiden mutation was also tested in a few patients utilizing single nucleotide polymorphism assays. In this pilot study, thrombosis occurred in 15% of the neonates undergoing cardiac surgery. Significant risk factors associated with thrombosis were pre-mature birth, use of cardio pulmonary bypass, and single ventricle physiology. Hypercoagulability factors associated with thrombosis determined by univarent analysis were elevated thrombin generation, enhanced expression of thrombin-activatable fibrinolytic inhibitor and plasminogen activator inhibitor as well as presence of cardiolipin antibodies and factor V Leiden mutation. No correlation was observed between thrombosis and expression of coagulation factors antithrombin III, protein C, protein S, and factor VIII. Multivarient analysis has proven to show thrombin generation, thrombin-activatable fibrinolytic inhibitor, and presence of cardiolipin antibodies as multivariable predictors of thrombosis. These significant hypercoagulability markers are independent predictors of thrombosis. Thus thrombosis predictability can help in post-operative management and care for neonates undergoing cardiac surgery by regulating pro- and/or anti-coagulation therapy.

Author(s):  
A.A. Abrishamizadeh

Ischemic stroke (IS) is a common cause of morbidity and mortality with significant socioeconomic impact especially when it affects young patients. Compared to the older adults, the incidence, risk factors, and etiology are distinctly different in younger IS. Hypercoagulable states are relatively more commonly detected in younger IS patients.Thrombophilic states are disorders of hemostatic mechanisms that result in a predisposition to thrombosis .Thrombophilia is an established cause of venous thrombosis. Therefore, it is tempting to assume that these disorders might have a similar relationship with arterial thrombosis. Despite this fact that 1-4 % of ischemic strokes are attributed to Thrombophillia, this   alone rarely causes arterial occlusions .Even in individuals with a positive thrombophilia screen and arterial thrombosis, the former might not be the primary etiological factor.Thrombophilic   disorders can be broadly divided into inherited or acquired conditions. Inherited thrombophilic states include deficiencies of natural anticoagulants such as protein C, protein S, and antithrombin III (AT III) deficiency, polymorphisms causing resistance to activated protein C(Factor V Leiden mutation), and disturbance in the clotting balance (prothrombin gene 20210G/A variant). Of all the inherited  thrombophilic disorders, Factor V Leiden mutation is perhaps the commonest cause. On the contrary, acquired thrombophilic disorders are more common and include conditions such as the antiphospholipid syndrome, associated with lupus anticoagulant and anticardiolipin antibodies.The more useful and practical approach of ordering various diagnostic tests for the uncommon thrombophilic states tests should be determined by a detailed clinical history, physical examination, imaging studies and evaluating whether an underlying hypercoagulable state appears more likely.The laboratory thrombophilia   screening should be comprehensive and avoid missing the coexisting defect and It is important that a diagnostic search protocol includes tests for both inherited and acquired thrombophilic disorders.Since the therapeutic approach (anticoagulation and thrombolytic therapy) determines the clinical outcomes, early diagnosis of the thrombophilic  disorders plays an important role. Furthermore, the timing of test performance of some of the  thrombophilic  defects (like protein C, protein S, antithrombin III and fibrinogen levels) is often critical since these proteins can behave as acute phase reactants and erroneously elevated levels of these factors may be observed in patients with acute thrombotic events. On the other hand, the plasma levels of vitamin K-dependent proteins (protein C, protein S and APC resistance) may not be reliable in patients taking vitamin K antagonists. Therefore, it is suggested that plasma-based assays for these disorders should be repeated3 to 6 months after the initial thrombotic episode to avoid false-positive results and avoid unnecessary prolonged   anticoagulation therapy. The assays for these disorders are recommended after discontinuation of oral anticoagulant treatment or heparin for at least 2 weeks.    


1998 ◽  
Vol 79 (06) ◽  
pp. 1166-1170 ◽  
Author(s):  
J. Brennand ◽  
J. A. Conkie ◽  
F. McCall ◽  
I. A. Greer ◽  
Isobel Walker ◽  
...  

SummaryA prospective study of activated protein C sensitivity, protein C, protein S, and other coagulation factors in 239 women during normal pregnancy was carried out. Protein C activity appeared unaffected by gestation, although an elevation of protein C activity was observed in the early puerperium. A fall in total and free protein S with increasing gestation was observed. Activated protein C sensitivity ratio (APC:SR) showed a progressive fall through pregnancy. This fall correlated with changes in factor VIIIc, factor Vc and protein S. 38% of subjects, with no evidence of Factor V Leiden or anticardiolipin antibodies, showed a low APC:SR (APC:SR <2.6) in the third trimester of pregnancy. Aside from a significant reduction in birth weight, no difference in pregnancy outcome was observed between these subjects and those with a normal APC:SR. Activated protein C sensitivity ratio, modified by pre-dilution of patient samples with factor V depleted plasma, showed no consistent trend with gestation.


1996 ◽  
Vol 75 (06) ◽  
pp. 899-901 ◽  
Author(s):  
Rudi G J Westendorp ◽  
Pieter H Reitsma ◽  
Rogier M Bertina

SummaryPatients with severe meningococcal infection are characterized by extensive microvascular thrombosis, consumption coagulopathy and secondary hemorrhages. The contribution of the inherited prethrombotic disorders to the severity of the disease course is not established yet. Here, we report on the levels of protein C, protein S, antithrombin and the presence of the factor V Leiden mutation (R506Q) in 50 patients with meningococcal disease, as determined 6 to 58 months after hospital discharge. In addition, we recalled the parents of 16 deceased patients to screen for the mutation in factor V, an abnormality which results in resistance to activated protein C. Among the patients, the prevalence of the genetic risk factors for thrombosis was not higher than expected on the basis of their prevalence in the general population. Moreover, the prevalence of the factor V Leiden mutation was not increased among the parents of the deceased patients. The individual plasma levels of protein C, protein S, and antithrombin did not differ between the patients with or without severe purpura. The present data constitute circumstantial evidence that primary defects in the natural anticoagulant systems do not play a major role in the severity of the disease course. Screening of patients with infectious purpura for inherited thrombotic risk factors is therefore not indicated.


2001 ◽  
Vol 7 (4) ◽  
pp. 259-268 ◽  
Author(s):  
Yale S. Arkel ◽  
De-Hui W. Ku

The association of thrombophilia with pregnancy complications has received increasing attention. It is now apparent that thrombophilia is respernsihle for a large number of the serious complications of pregnancy such as venous thrombosis, pulmonary embolism, fetal loss, pregnancy loss, intrauterine fetal demise, and preeclampsia. The inherited thrombophilia abnormalities, factor V Leiden mutation, prothrombin gene mutation 20210A, and antithrombin III, protein C, and protein S deficiency, and the acquired disorders, the anticardiolipin syndrome and lupus inhibitor, are responsible for a large share of the incidences of premature termination of pregnancy and many of the above complications. The normal physiology of pregnancy may be prothrombotic, with evidence for increased markers of activated coagulation and coagulation factors. There is a decrease in protein S and resistance to activated protein C occurs in a significant number of pregnancies in the absence of the factor V Leiden mutation. In the following article, we review some of the major studies that have correlated the thrombophilia and other acquired disorders that adversely impact pregnancies.


1995 ◽  
Vol 74 (05) ◽  
pp. 1255-1258 ◽  
Author(s):  
Arnaldo A Arbini ◽  
Pier Mannuccio Mannucci ◽  
Kenneth A Bauer

SummaryPatients with hemophilia A and B and factor levels less than 1 percent of normal bleed frequently with an average number of spontaneous bleeding episodes of 20–30 or more. However there are patients with equally low levels of factor VIII or factor IX who bleed once or twice per year or not at all. To examine whether the presence of a hereditary defect predisposing to hypercoagulability might play a role in amelio rating the hemorrhagic tendency in these so-called “mild severe” hemophiliacs, we determined the prevalence of prothrombotic defects in 17 patients with hemophilia A and four patients with hemophilia B selected from 295 and 76 individuals with these disorders, respectively, followed at a large Italian hemophilia center. We tested for the presence of the Factor V Leiden mutation by PCR-amplifying a fragment of the factor V gene which contains the mutation site and then digesting the product with the restriction enzyme Mnll. None of the patients with hemophilia A and only one patient with hemophilia B was heterozygous for Factor V Leiden. None of the 21 patients had hereditary deficiencies of antithrombin III, protein C, or protein S. Our results indicate that the milder bleeding diathesis that is occasionally seen among Italian hemophiliacs with factor levels that are less than 1 percent cannot be explained by the concomitant expression of a known prothrombotic defect.


Neurosurgery ◽  
2008 ◽  
Vol 63 (4) ◽  
pp. 693-699 ◽  
Author(s):  
Rüediger Gerlach ◽  
Martina Boehm-Weigert ◽  
Joachim Berkefeld ◽  
Judith Duis ◽  
Andreas Raabe ◽  
...  

ABSTRACT OBJECTIVE Numerous studies have reported the technical aspects and results of surgical and/or endovascular treatment of cranial dural arteriovenous fistulae (cDAVF) and spinal dural arteriovenous fistulae (sDAVF). Only a few of them have addressed the question of thrombophilic conditions, which may be relevant as pathogenetic factors or can increase the risk for venous thromboembolic events. Therefore, the objective of this study is to compare thrombophilic risk factors in patients with cDAVF and sDAVF with no history of trauma. METHODS A total of 43 patients (25 with cDAVF and 18 with sDAVF) were included in this study. Blood samples were analyzed for G20210A mutation of the prothrombin gene and factor V Leiden mutation. In all patients, prothrombin time, international normalized ratio, fibrinogen, antithrombin, protein C and S activity, von Willebrand factor antigen, ristocetin cofactor activity, D-dimer, coagulation factor VIII activity, and tissue factor pathway inhibitor were determined. Screening was performed for the occurrence of lupus antiphospholipid and cardiolipin antibodies. RESULTS The prevalence of G20210A mutation of the prothrombin gene was significantly higher in patients with cDAVF (n = 6) compared with patients with sDAVF (n = 0; P &lt; 0.05, Fisher's exact test). A factor V Leiden mutation was found in 3 patients with sDAVF and in 1 patient with cDAVF (P = 0.29, Fisher's exact test). No significant difference was found for other parameters, except for fibrinogen, but decreased protein C activity was more frequent in patients with cDAVF compared with patients with sDAVF (4 versus 1). Decreased protein S activity was encountered in 3 patients (2 with sDAVF and 1 with cDAVF). Cardiolipin antibodies were found in 2 patients with cDAVF but in none with sDAVF, whereas only 1 patient with sDAVF had lupus antiphospholipid antibodies. CONCLUSION In both groups of patients with dural arteriovenous fistulae, genetic thrombophilic abnormalities occurred in a higher percentage than in the general population. The differences of the genetic abnormalities may be involved in different pathophysiological mechanism(s) in the development of these distinct neurovascular entities.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3506-3506
Author(s):  
Ferial Peyvandi ◽  
Wolfgang Miesbach ◽  
Wolfgang Wegert ◽  
Inge Scharrer

Abstract Introduction: The incidence of Factor V Leiden mutation (Arg 506 Gln) is significantly high in patients with venous and arterial thrombosis. In patients with antiphospholipid syndrome (APS), the FVL mutation may play a major role in the occurrence of thrombosis. The aim of this study was to demonstrate that an increased Endogenous Thrombin Potential (ETP) may be an important mechanism for the thrombotic risk associated with FVL and / or APS and to know if the FVL mutation would increase the risk of thrombosis in patients with APS. Additionally, we tested if fluorometric determination of ETP( area under the curve), thrombin generation velocity (PEAK) and TIME TO PEAK (time from starting to reaching the peak), is suitable to determine changes in haemostatic parameters. Methods and patients: We measured the thrombin generation in 120 patients (67F, 53M) with a median age of 40 year categorized in 3 groups of 40 patients each:(1) either heterozygous or homozygous FVL mutation (14F, 26M of whom 29 were heterozygous and 11 were homozygous) (2) presence of antiphospholipid antibodies (aPL) (20F, 20M) and (3) a combination of both (33F,7M). Three characterizing thrombin generation parameters were measured: ETP, PEAK and TIME TO PEAK. Platelet poor plasma samples (PPP) were derived from citrated blood. In a microtiter plate, we used different concentrations of TF with phospholipids after adding PRP(platelet poor plasma) and buffer. The reaction was started after adding substrate solution. Fluorometer was the Fluoroskan Ascent Type 374. Results: Using four concentrations (Innovin dilutions 1:600, 1:6.000, 1:50.000 and 1:500.000) of TF, the following results (ETP units = relative fluorescence units or RFU; PEAK units: RFU/min; TIME TO PEAK units = min) were obtained for the 3 groups: For all patients TF 1:600 median ETP, PEAK and TIME TO PEAK were taken as 100 % because less dilution gives no further increase resp. decrease in these parameters Patients with aPL: median ETP decreased from 100 % to 36,6 % (lowest TF concentration), PEAK to 34,4 % and TIME TO PEAK increased to 218 %. Patients with FVL median ETP decreased from 100 % to 2,64 % (lowest TF concentration), PEAK to 9 % and TIME TO PEAK increased to 282 %. Patients with aPl and FVL => median ETP decreased from 100 % to 33 % (lowest TF concentration), PEAK to 30,8 % and TIME TO PEAK increased to 143 %. While there was no detectable thrombin generation in aPL patients in low concentration of TF, at the two highest concentrations the thrombin generation was comparable to same concentrations in the haemostatically normal control samples(data not shown). For those affected by FVL and aPL, the threshold of detectable thrombin generation was even shifted to lower concentrations of TF, regarding a “residual activity” of about 33 % for ETP and PEAK, as for patients with FVL. In patients with APS, TF 1:50.000 caused a thrombin generation comparable to TF 1:6.000 in haemostatically normal controls, showing a shift in coagulation factor reactability. In a physiological environment this could indicate a stronger haemostatic reaction to minor vascular lesions in patients affected by factor V Leiden mutation than in those without it. Conclusion: A thrombin generation assay utilizing lower concentrations of TF as coagulation initiating agent could be usefully performed to assess thrombophilic states due to coagulation factor mutations and /or presence of antiphospholipid antibody.


1999 ◽  
Vol 82 (08) ◽  
pp. 662-666 ◽  
Author(s):  
Sandra J. Hasstedt ◽  
Mark F. Leppert ◽  
George L. Long ◽  
Edwin G. Bovill

IntroductionNearly 150 years ago, Virchow postulated that thrombosis was caused by changes in the flow of blood, the vessel wall, or the composition of blood. This concept created the foundation for subsequent investigation of hereditary and acquired hypercoagulable states. This review will focus on an example of the use of modern genetic epidemiologic analysis to evaluate the multigenic pathogenesis of the syndrome of juvenile thrombophilia.Juvenile thrombophilia has been observed clinically since the time of Virchow and is characterized by venous thrombosis onset at a young age, recurrent thrombosis, and a positive family history for thrombosis. The pathogenesis of juvenile thrombophilia remained obscure until the Egeberg observation, in 1965, of a four generation family with juvenile thrombophilia associated with a heterozygous antithrombin deficiency subsequently identified as antithrombin Oslo (G to A in the triplet coding for Ala 404).1,2 The association of a hereditary deficiency of antithrombin III with thrombosis appeared to support the hypothesis, first put forward by Astrup in 1958, of a thrombohemorrhagic balance.3 He postulated that there is a carefully controlled balance between clot formation and dissolution and that changes in conditions, such as Virchow’s widely encompassing triad, could tip the balance toward thrombus formation.The importance of the thrombohemorrhagic balance in hypercoagulable states has been born out of two lines of investigation: evidence supporting the tonic activation of the hemostatic mechanism and the subsequent description of additional families with antithrombin deficiency and other genetically abnormal hemostatic proteins associated with inherited thrombophilia. Assessing the activation of the hemostatic mechanism in vivo is achieved by a variety of measures, including assays for activation peptides generated by coagulation enzyme activity. Activation peptides, such as prothrombin fragment1+2, are measurable in normal individuals, due to tonic hemostatic activity and appear elevated in certain families with juvenile thrombophilia.4 In the past 25 years since Egeberg’s description of antithrombin deficiency, a number of seemingly monogenic, autosomal dominant, variably penetrant hereditary disorders have been well established as risk factors for venous thromboembolic disease. These disorders include protein C deficiency, protein S deficiency, antithrombin III deficiency, the presence of the factor V Leiden mutation, and the recently reported G20210A prothrombin polymorphism.5,6 These hereditary thrombophilic syndromes exhibit considerable variability in the severity of their clinical manifestations. A severe, life-threatening risk for thrombosis is conferred by homozygous protein C or protein S deficiency, which if left untreated, leads to death.7,8 Homozygous antithrombin III deficiency has not been reported but is also likely to be a lethal condition. Only a moderate risk for thrombosis is conferred by the homozygous state for factor V Leiden or the G20210A polymorphism.9,10 In contrast to homozygotes, the assessment of risk in heterozygotes, with these single gene disorders, has been complicated by variable clinical expression in family members with identical genotypes.11 Consideration of environmental interactions has not elucidated the variability of clinical expression. Consequently, it has been postulated that more than one genetic risk factor may co-segregate with a consequent cumulative or synergistic effect on thrombotic risk.12 A number of co-segregating risk factors have been described in the past few years. Probably the best characterized interactions are between the common factor V Leiden mutation, present in 3% to 6% of the Caucasian population,13,14 and the less common deficiencies of protein C, protein S, and antithrombin III. The factor V Leiden mutation does not, by itself, confer increased risk of thrombosis. The high prevalence of the mutation, however, creates ample opportunity for interaction with other risk factors when present.The G20210A prothrombin polymorphism has a prevalence of 1% to 2% in the Caucasian population and, thus, may play a similar role to factor V Leiden. A number of small studies have documented an interaction of G20210A with other risk factors.15-17 A limited evaluation of individuals with antithrombin III, protein C, or protein S deficiency revealed a frequency of 7.9% for the G20210A polymorphism, as compared to a frequency of 0.7% for controls.18 The G20210A polymorphism was observed in only 1 of the 6 protein C-deficient patients.18 In the present state, the elucidation of risk factors for venous thromboembolic disease attests to the effectiveness of the analytical framework constructed from the molecular components of Virchow’s triad, analyzed in the context of the thrombohemorrhagic balance hypothesis. Two investigative strategies have been used to study thromobophilia: clinical case-control studies and genetic epidemiologic studies. The latter strategy has gained considerable utility, based on the remarkable advances in molecular biology over the past two decades. Modern techniques of genetic analysis of families offer important opportunities to identify cosegregation of risk factors with disease.19 The essence of the genetic epidemiologic strategy is the association of clinical disease with alleles of specific genes. It is achieved either by the direct sequencing of candidate genes or by demonstration of linkage to genetic markers.


Sign in / Sign up

Export Citation Format

Share Document