mutation site
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 112)

H-INDEX

28
(FIVE YEARS 3)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Xun Wang ◽  
Xiaoying Wang ◽  
Xiaoxiao Zhang ◽  
Sheng He ◽  
Yaosheng Chen ◽  
...  

African swine fever (ASF) was first introduced into Northern China in 2018 and has spread through China since then. Here, we extracted the viral DNA from the blood samples from an ASF outbreak farm in Guangdong province, China and sequenced the whole genome. We assembled the full length genomic sequence of this strain, named China/GD/2019. The whole genome was 188,642 bp long (terminal inverted repeats and loops were not sequenced), encoding 175 open reading frames (ORF). The China/GD/2019 strain belonged to p72 genotype II and p54 genotype IIa. Phylogenetic analysis relationships based on single nucleotide polymorphisms (SNPs) also demonstrated that it grouped into genotype II. A certain number of ORFs mainly belonging to multigene families (MGFs) were absent in the China/GD/2019 strain in comparison to the China/ASFV/SY-18 strain. A deletion of approximately 1 kb was found in the China/GD/2019 genome which was located at the EP153R and EP402R genes in comparison to the China/2018/AnhuiXCGQ strain. We revealed a synonymous mutation site at gene F317L and a non-synonymous mutation site at gene MGF_360-6L in China/GD/2019 comparing to three known Chinese strains. Pair-wise comparison revealed 165 SNP sites in MGF_360-1L between Estonia 2014 and the China/GD/2019 strain. Comparing to China/GD/2019, we revealed a base deletion located at gene D1133L in China/Pig/HLJ/2018 and China/DB/LN/2018, which results in a frameshift mutation to alter the encoding protein. Our findings indicate that China/GD/2019 is a new variant with certain deletions and mutations. This study deepens our understanding of the genomic diversity and genetic variation of ASFV.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Xue Li ◽  
Ning Ding ◽  
Zhichao Zhang ◽  
Dehong Tian ◽  
Buying Han ◽  
...  

This study was conducted to evaluate SSTR1 gene polymorphisms and their association with growth traits in Hulun Buir sheep. We followed 233 Hulun Buir sheep from birth to 16 months of age, born in the same pasture and on the same year under a consistent grazing conditions. The body weight (BW), body height (BH), body length (BL), chest circumference (ChC), chest depth (ChD), chest width (ChW), hip width (HW), and cannon circumference (CaC) were measured and recorded at birth, 4 months, 9 months, and 16 months of age. The polymorphisms of the SSTR1 gene in Hulun Buir sheep were excavated using exon sequencing, and association analyses of between SNPs and growth traits at each growth stage were conducted. The results showed that there were four SNPs in Exon 2 of the SSTR1 gene, SNP1, SNP2, and SNP3 were low mutation sites, and SNP4 was a moderate mutation site. Four SNPs were consistent with Hardy–Weinberg equilibrium, and all of them were synonymous mutations. The association analyses found that the genotypes of SNP2 were significantly associated with WW and BH at 4 months of age, BW, BL, ChC, and HW at 9 months of age (p < 0.05), and extremely significantly associated with ChD at 4 and 9 months of age (p < 0.01). There were significant associations between SNP3 and BH at 9 months of age, between SNP4 and ChD, ChW, and CaC at 9 months of age, and BW and ChC at 16 months of age (p < 0.05). There were no detectable associations with growth traits among the seven haplotypes between the SNP1, 3, and 4 of a strong linkage disequilibrium (p > 0.05). These results indicated that SNP2, SNP3, and SNP4 may be used as molecular markers for growth traits of Hulun Buir sheep.


2021 ◽  
Author(s):  
Zheng Jiang ◽  
Zengfang Zhuang ◽  
Kaixia Mi

Understanding how Mycobacterium tuberculosis has evolved into a professional pathogen is helpful in studying its pathogenesis and for designing vaccines. We investigated how the evolutionary adaptation of M. smegmatis mc251 to an important clinical stressor H2O2 allows bacteria undergo coordinated genetic mutations, resulting in increased pathogenicity. Whole-genome sequencing identified a mutation site in the fur gene, which caused increased expression of katG. Using a Wayne dormancy model, mc251 showed a growth advantage over its parental strain mc2155 in recovering from dormancy under anaerobic conditions. Meanwhile, the high level of KatG in mc251 was accompanied by a low level of ATP, which meant that mc251 is at a low respiratory level. Additionally, the redox-related protein Rv1996 showed different phenotypes in different specific redox states in M. smegmatis mc2155, mc251, M. bovis BCG and M. tuberculosis mc27000. In conclusion, our study shows that the same gene presents different phenotypes under different physiological conditions. This may partly explain why M. smegmatis and M. tuberculosis have similar virulence factors and signaling transduction systems such as two-component systems and sigma factors, but due to the different redox states in the corresponding bacteria, M. smegmatis is a nonpathogen, while M. tuberculosis is a pathogen. As mc251 overcomes its shortcomings of rapid removal, it can be potentially developed as a vaccine vector.


2021 ◽  
Author(s):  
Quan Gan ◽  
Fengshun Song ◽  
Cuixiang Lin ◽  
Dahu Ni

Abstract Background: Rice is one of the most common cereal crops in China. Increasing the yield of rice has always been a primary purpose of rice breeding. However, panicle degeneration in rice, a complex characteristic regulated by many genes and commonly encountered in rice production, seriously reduces the yield. Findings: In this study, we obtained a new apical panicle degeneration mutant named ym48, which exhibits a serious degeneration rate and reduced grain yield in rice. After fine mapping, the OsCAX1a gene responsible for Ca2+ selection and transportation was identified. In the ym48 mutant of the OsCAX1a gene, a A to G substitution was noted at the 190th nucleotide, and the corresponding 64th amino acid was changed from threonine to alanine. Also, the tolerance from Ca2+ stress was damaged due to the mutation. Phylogenetics, protein sequence alignment and motif identification of CAX family members in Arabidopsis and rice indicated that this mutation site was highly conserved and might play an essential role in Ca2+ transportation. Moreover, the OsCAX1a expression pattern was analyzed in rice. qRT-PCR and GUS (β-glucuronidase) staining experiments showed that OsCAX1a was highly expressed in roots, stems and panicles and that its expression increased with panicle development. Conclusions: These results demonstrated that OsCAX1a played an essential role in the regulation of panicle development for the first time and mutation of OsCAX1a would generate the panicle degeneration in rice. This study provided a new view point to explore the mechanism of panicle development and degeneration in rice.


2021 ◽  
Vol 11 (12) ◽  
pp. 1320
Author(s):  
Elias K. Awad ◽  
Marc Moore ◽  
Hui Liu ◽  
Lukasz Ciszewski ◽  
Laura Lambert ◽  
...  

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with almost 3000 different disease-causing variants within the NF1 gene identified. Up to 44% of these variants cause splicing errors to occur within pre-mRNA. A recurrent variant in exon 13, c.1466A>G; p.Y489C (Y489C) results in the creation of an intragenic cryptic splice site, aberrant splicing, a 62 base pair deletion from the mRNA, and subsequent frameshift. We investigated the ability of phosphorodiamidate morpholino oligomers (PMOs) to mask this variant on the RNA level, thus restoring normal splicing. To model this variant, we have developed a human iPS cell line homozygous for the variant using CRISPR/Cas9. PMOs were designed to be 25 base pairs long, and to cover the mutation site so it could not be read by splicing machinery. Results from our in vitro testing showed restoration of normal splicing in the RNA and restoration of full length neurofibromin protein. In addition, we observe the restoration of neurofibromin functionality through GTP-Ras and pERK/ERK testing. The results from this study demonstrate the ability of a PMO to correct splicing errors in NF1 variants at the RNA level, which could open the door for splicing corrections for other variants in this and a variety of diseases.


2021 ◽  
Author(s):  
Huizhen Xin ◽  
Zhenzhen Pan ◽  
Xiangyi Zhe ◽  
Chunhe Zhang ◽  
Hongtao Li ◽  
...  

Abstract Background: To investigate the genotype distribution of human papillomavirus (HPV) in infected Uygur and Han women in Xinjiang; analyze the HPV16 E6 gene polymorphism site and relationship with the development of cervical cancer.Methods: The HPV16 E6 sequence was analyzed using the European standard prototype to perform an evolutionary tree. HPV16 E6-295T/350T, 295G/350G, and 295T/350G GV230 vectors were stably transfected into cervical cancer C33A cells to analyze the cell proliferation, migration and invasion, apoptosis by CCK8 and clonogenic assays, transwell and cell scratch assays, FACS experiments. Results: The total HPV infection rate was 26.390% (760/2879), whereas the Uygur 22.87% (196/857) and the Han was 27.89% (564/2022) (P < 0.05). Among 110 mutations, 65 cases of E6 genes were mutated at nucleotide 350 (T350G) with the leucine changing to valine (L83V). Moreover, there were 7 cases of E6 gene mutated at nucleotide 295 (T295G) with aspartic changing to glutamic (D64E). When E6 vector(s) of mutations sites were transfected into C33A cells, they were found to promote cellular proliferation, migration, invasion, and inhibit apoptosis. The 295T/350G had the strongest effect on C33A cells and 295G/350G was significantly stronger than 295T/350T (P < 0.05).Conclusions: The positive HPV infection rates differed between the Uygur and Han in Xinjiang, and the genotype distribution of infection was different. After transfecting C33A cells with different eukaryotic expression vectors, the 295T/350G mutation site promoted the proliferation,migration, and invasion of C33A cells to a greater extent than 295G/350G; however, 295G/350G had a stronger effect than 295T/350T.


2021 ◽  
Author(s):  
Wang Yi ◽  
Gao Wenjun ◽  
Wang Hailong ◽  
Xu Kepan ◽  
Luo Wen ◽  
...  

Abstract The chitosanase (BaCsn46A) was extracted from Bacillus amyloliquefaciens (GenBank: QEK97559.1) and synthesized after codon optimization. The saturation mutation site was determined by analyzing the sequence and three-dimensional protein model. WT and mutant chitosanase genes were cloned and expressed in E. coli BL21 (DE3). The enzymatic properties of WT and mutants were compared, including the optimal reaction pH, temperature and thermostability. Three mutants S196F, S196Y and S196A with the highest specific enzyme activity were selected for further study. Compared with WT, the specific enzyme activity of S196Y increased by 144.76% (more than other two mutants), and the thermostability was not significantly improved. While the specific enzyme activity of S196A increased by 118.79%, and the thermostability of S196A was much higher than WT. From the perspective of industrial production, S196A is more in line with the requirements of industrial production because of its excellent thermal stability at 60°C. From the results of circular dichroism spectrum, the mutation of chitosanase at Ser196 did not change the secondary protein structure. In addition, CD analysis showed that the secondary structure of WT and mutants did not change significantly, indicating that the improvement of thermostability of S196A was not related to the secondary structure.


Author(s):  
Shihong Ma ◽  
Hui Wang ◽  
Wanling Li ◽  
Zhe Yan ◽  
Xuanming Luo ◽  
...  

To explore the correlation between the activating transcription factor 4 (ATF4) and procalcitonin (PCT) expressions combined with RET mutation and the pathological staging and clinical prognosis of sporadic medullary thyroid carcinoma (SMTC). Fifty cases (tumor tissue) of SMTC diagnosed by clinicopathology were collected and the patients with nodular goiter were selected as normal control. The RET mutation site was analyzed by detection kit and expressions of PCT and ATF4 in SMTC were analyzed by Western blot and immunohistochemistry. Multiple linear regression was used to analyze the correlation of risk factors (PCT or ATF4 expression, RET mutation, tumor differentiation, SMTC stage, lymphatic metastasis) for 5-year recurrence and survival of SMTC. The ATF4 and PCT expressions were significantly decreased and increased, respectively, with the increase of the SMTC stage. The most frequent mutation of RET gene in cancer tissue was M 22458A in exon 16. The ATF4 and PCT expressions, as well as RET mutation, were significantly associated with a 5-year recurrence, while the ATF4 expression was significantly related to better 5-year survival. ATF4 and PCT expressions combined with RET mutation are related to the clinical prognosis of SMTC and can predict SMTC staging.


2021 ◽  
Vol 3 ◽  
pp. e19
Author(s):  
Mohini Yadav ◽  
Manabu Igarashi ◽  
Norifumi Yamamoto

The substitution of Ile to Val at residue 117 (I117V) of neuraminidase (NA) reduces the susceptibility of the A/H5N1 influenza virus to oseltamivir (OTV). However, the molecular mechanism by which the I117V mutation affects the intermolecular interactions between NA and OTV has not been fully elucidated. In this study, we performed molecular dynamics (MD) simulations to analyze the characteristic conformational changes that contribute to the reduced binding affinity of NA to OTV after the I117V mutation. The results of MD simulations revealed that after the I117V mutation in NA, the changes in the secondary structure around the mutation site had a noticeable effect on the residue interactions in the OTV-binding site. In the case of the WT NA-OTV complex, the positively charged side chain of R118, located in the β-sheet region, frequently interacted with the negatively charged side chain of E119, which is an amino acid residue in the OTV-binding site. This can reduce the electrostatic repulsion of E119 toward D151, which is also a negatively charged residue in the OTV-binding site, so that both E119 and D151 simultaneously form hydrogen bonds with OTV more frequently, which greatly contributes to the binding affinity of NA to OTV. After the I117V mutation in NA, the side chain of R118 interacted with the side chain of E119 less frequently, likely because of the decreased tendency of R118 to form a β-sheet structure. As a result, the electrostatic repulsion of E119 toward D151 is greater than that of the WT case, making it difficult for both E119 and D151 to simultaneously form hydrogen bonds with OTV, which in turn reduces the binding affinity of NA to OTV. Hence, after the I117V mutation in NA, influenza viruses are less susceptible to OTV because of conformational changes in residues of R118, E119, and D151 around the mutation site and in the binding site.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuan Tian ◽  
Lisa M. Parsons ◽  
Ewa Jankowska ◽  
John F. Cipollo

The SARS-CoV-2 spike protein is heavily glycosylated, having 22 predicted N-glycosylation sites per monomer. It is also O-glycosylated, although the number of O-glycosites is less defined. Recent studies show that spike protein glycans play critical roles in viral entry and infection. The spike monomer has two subdomains, S1 and S2, and a receptor-binding domain (RBD) within the S1 domain. In this study, we have characterized the site-specific glycosylation patterns of the HEK293 recombinant spike RBD and S1 domains as well as the intact spike derived from the whole virus produced in Vero cells. The Vero cell-derived spike from the WA1 strain and a D614G variant was analyzed. All spike proteins, S1, and RBDs were analyzed using hydrophilic interaction chromatography (HILIC) and LC-MS/MS on an Orbitrap Eclipse Tribrid mass spectrometer. N-glycans identified in HEK293-derived S1 were structurally diverse. Those found in the HEK293-derived RBD were highly similar to those in HEK293 S1 where N-glycosites were shared. Comparison of the whole cell-derived WA1 and D614G spike proteins revealed that N-glycosites local to the mutation site appeared to be more readily detected, hinting that these sites are more exposed to glycosylation machinery. Moreover, recombinant HEK293-derived S1 was occupied almost completely with complex glycan, while both WA1 and D614G derived from the Vero E6 cell whole virus were predominantly high-mannose glycans. This stands in stark contrast to glycosylation patterns seen in both CHO- and HEK cell-derived recombinant S1, S2, and the whole spike previously reported. Concerning O-glycosylation, our analyses revealed that HEK293 recombinant proteins possessed a range of O-glycosites with compositions consistent with Core type 1 and 2 glycans. The O-glycosites shared between the S1 and RBD constructs, sites T323 and T523, were occupied by a similar range of Core 1 and 2 type O-glycans. Overall, this study reveals that the sample nature and cell substrate used for production of these proteins can have a dramatic impact on the glycosylation profile. SARS-CoV-2 spike glycans are associated with host ACE2 receptor interaction efficiency. Therefore, understanding such differences will serve to better understand these host–pathogen interactions and inform the choice of cell substrates to suite downstream investigations.


Sign in / Sign up

Export Citation Format

Share Document