Abstract 216: Traditional Chinese Medicine Tongxinluo Modulates The Secretion Of Cytokines In Vitro By Cardiac Microvascular Endothelial Cells In Ischemia/Reperfusion Injury.

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Hehe Cui ◽  
Xiangdong Li ◽  
Zhigang Wang ◽  
Na Li ◽  
Kang Qi ◽  
...  

Cardiac microvascular endothelial cells (CMECs) regulate the function of cardiomyocytes and blood cells in myocardial ischemia/ reperfusion injury (MIRI) via paracrine methods. Tongxinluo (TXL) is a Traditional Chinese Medicine compound to treat angina pectoris in China, which is constituted of ginseng and other 11 natural products. It is proved to improve the endothelial function and be protective against MIRI. Thus, we aimed to find alterations in paracrine function of CMECs under the hypoxia/reoxygenation (H/R) situation and its modulation by TXL. CMECs were exposed to different concentrations of TXL for 30 min and then subjected to H/R for 12 h/2 h. Apoptotic rates were measured to determine the optimal concentration. Protein antibody arrays were used to find the alterations of cytokines in conditioned medium (CM) secreted by CMECs. Gene Ontology project was adopted to describe the functions of changed cytokines. TXL inhibited apoptosis of CMECs dose-dependently under H/R and reached its peak effect at 800 μg/mL. Thirty-three types of cytokines were significantly changed by H/R (19 factors decreased and 14 increased), and TXL at 800μg/ml changed 121 types of cytokines compared to the H/R group (93 factors decreased and 28 increased). The cytokines with significant alterations were involved in cell differentiation and proliferation, positive chemotaxis, and endothelial cell migration. Among these cytokines, bFGF, PDGF and IL-7 were attenuated by H/R and further decreased by TXL, while IL-21, MCP-2 and GROa were increased by H/R but decreased by TXL. The study elucidated the paracrine function of CMECs in MIRI and partly illuminated the protective mechanisms of TXL.

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Qing Li ◽  
Yuejin Yang

Background: Proteomics is a potential tool to study the large-scale expression, function and interaction of the complement of proteins in an organism. In this study, we used the TMT-labeled proteomics to detect the various cytokines in an in vitro model of cardiac microvascular endothelial cells (CMECs) ischemia/reperfusion injury with Tongxinluo(TXL) treatment. Our aims are to investigate whether TXL could modulate the secretion function of CMECs, and to synthetically analysis the underlying mechanism of the regulation. Methods: Human CMECs were exposed to different concentrations of TXL, and incubated to scavenge free oxygen for 2 h of hypoxia and were moved to normal conditions for 2 h of reoxygenation. Cell apoptosis was assessed by flow cytometric analysis. CMECs were divided into three groups for TMT-labeled proteomics analysis: CMECs in normal condition (Group N), CMECs in hypoxia and serum deprivation condition (Group HR), CMECs treatment with TXL in hypoxia and serum condition(Group HR+TXL) . We utilized bioinformatics analysis to identify differential proteins. Results: TXL concentration-dependently decreased apoptosis of CMECs. The optimal concentration of TXL to have the maximum protection for CMECs was 800 μg/mL. Both hypoxia/reoxygenation and TXL treatment significantly changed the cytokines level of CMECs. 32 differential proteins between group N and group HR were detected. TXL treatment up-regulated 6 cytokines and down-regulated 6 cytokines in ischemia/reperfusion injury. These proteins mainly had vital functions such as cell proliferation, stress response, regulation of multicelluler organismal metabolic process. We evaluated several proteins played important roles in ischemia/reperfusion injury including Human Heme Oxygenase 1 (HMOX1), angiopoietin 2 (ANGPT2), sequestosome 1 (SQSTM1), and connective tissue growth factor (CTGF). Conclusion: The study presented differential proteins responsible for ischemia/reperfusion injury through TMT-labeled proteomic analysis. We assessed some vital proteins including their characters and roles. These findings may provide new mechanisms of TXL treatment in acute myocardial diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Zhu Hai-Yan ◽  
Gao Yong-Hong ◽  
Wang Zhi-Yao ◽  
Xu Bing ◽  
Wu Ai-Ming ◽  
...  

Astragalus polysaccharide is a major component of radix astragali, a vital qi-reinforcing herb medicine with favorable immune-regulating effects. In a previous animal experiment, we demonstrated that astragalus polysaccharide effectively alleviates ischemia-reperfusion injury (IRI) of cardiac muscle through the regulation of the inflammatory reactions. However, the relationship between this herb and the cohesion molecules on the cell surface remains controversial. In this study, human cardiac microvascular endothelial cells (HCMECs) were used to validate the protective effects of astragalus under an IRI scheme simulated through hypoxia/reoxygenation in vitro. The results indicated that astragalus polysaccharide inhibited the cohesion between HCMECs and polymorphonuclear leukocyte (PMN) during IRI through the downregulation of p38 MAPK signaling and the reduction of cohesive molecule expression in HCMECs.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Elisa Zicola ◽  
Elisa Arrigo ◽  
Daniele Mancardi

Endothelial cell injury and vascular function strongly correlate with cardiac function following ischemia/reperfusion injury. Several studies indicate that endothelial cells are more sensitive to ischemia/reperfusion compared to cardiomyocytes and are critical mediators of cardiac ischemia/reperfusion injury. H2S is involved in the regulation of cardiovascular system homeostasis and can act as a cytoprotectant during ischemia/reperfusion. Activation of ERK1/2 in endothelial cells after H2S stimulation exerts an enhancement of angiogenesis while its inhibition significantly decreases H2S cardioprotective effects. In this work, we investigated how H2S pretreatment for 24 hours prevents the ischemia/reperfusion injury and promotes angiogenesis on microvascular endothelial cells following an ischemia/reperfusion protocol in vitro, using a hypoxic chamber and ischemic buffer to simulate the ischemic event. H2S preconditioning positively affected cell viability and significantly increased endothelial cell migration when treated with 1 μM H2S. Furthermore, mitochondrial function was preserved when cells were preconditioned. Since ERK1/2 phosphorylation was extremely enhanced in ischemia/reperfusion condition, we inhibited ERK both directly and indirectly to verify how H2S triggers this pathway in endothelial cells. Taken together, our data suggest that H2S treatment 24 hours before the ischemic insult protects endothelial cells from ischemia/reperfusion injury and eventually decreases myocardial injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xutong Li ◽  
Ye Zhang ◽  
Yong Wang ◽  
Dan Zhao ◽  
Chengcheng Sun ◽  
...  

Background. Ischemic stroke is a severe acute cerebrovascular disease which can be improved with neuroprotective therapies at an early stage. However, due to the lack of effective neuroprotective drugs, most stroke patients have varying degrees of long-term disability. In the present study, we investigated the role of exosomes derived from CXCR4-overexpressing BMSCs in restoring vascular function and neural repair after ischemic cerebral infarction. Methods. BMSCs were transfected with lentivirus encoded by CXCR4 (BMSCCXCR4). Exosomes derived from BMSCCXCR4 (ExoCXCR4) were isolated and characterized by transmission electron microscopy and dynamic light scattering. Western blot and qPCR were used to analyze the expression of CXCR4 in BMSCs and exosomes. The acute middle cerebral artery occlusion (MCAO) model was prepared, ExoCXCR4 were injected into the rats, and behavioral changes were analyzed. The role of ExoCXCR4 in promoting the proliferation and tube formation for angiogenesis and protecting brain endothelial cells was determined in vitro. Results. Compared with the control groups, the ExoCXCR4 group showed a significantly lower mNSS score at 7 d, 14 d, and 21 d after ischemia/reperfusion ( P < 0.05 ). The bEnd.3 cells in the ExoCXCR4 group have stronger proliferation ability than other groups ( P < 0.05 ), while the CXCR4 inhibitor can reduce this effect. Exosomes control (ExoCon) can significantly promote the migration of bEnd.3 cells ( P < 0.05 ), while there was no significant difference between the ExoCXCR4 and ExoCon groups ( P > 0.05 ). ExoCXCR4 can further promote the proliferation and tube formation for the angiogenesis of the endothelium compared with ExoCon group ( P < 0.05 ). In addition, cobalt chloride (COCl2) can increase the expression of β-catenin and Wnt-3, while ExoCon can reduce the expression of these proteins ( P < 0.05 ). ExoCXCR4 can further attenuate the activation of Wnt-3a/β-catenin pathway ( P < 0.05 ). Conclusions. In ischemia/reperfusion injury, ExoCXCR4 promoted the proliferation and tube formation of microvascular endothelial cells and play an antiapoptotic role via the Wnt-3a/β-catenin pathway.


Sign in / Sign up

Export Citation Format

Share Document