Abstract 44: Telomere and Mitochondrial Dysfunction in Duchenne Muscular Dystrophy

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Alex C Chang ◽  
Sang-Ging Ong ◽  
Joseph Wu ◽  
Helen M Blau

Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disease that is result of mutations in the dystrophin gene and is the most common myopathic disease in humans with a prevalence of one in every 3500 males. Dystrophin is crucial for the formation of a dystrophin-glycoprotein complex (DGC), which connects the cytoskeleton of a muscle fiber to the surrounding extracellular matrix in both skeletal and cardiac muscles. In the heart, loss of dystrophin leads to increased fibrosis and death in the third decade of life due to dilated cardiomyopathy. A conundrum in studying and developing therapies for DMD has been the lack of a mouse model that fully recapitulates the clinical phenotype, as mice that lack dystrophin (mdx model), unlike patients, exhibit only mild skeletal muscle defects, essentially no cardiac defects and have a relatively normal lifespan. Our lab reasoned that the difference in the manifestation of the disease in mice and humans could be telomere length, as mice have substantially longer telomeres than humans. We created a novel mouse model with shortened telomere lengths (similar to humans) that fully recapitulates the skeletal muscle (Cell. 2010;143:1059-1071; the mdx/mTRKO model) and cardiac muscle phenotype of DMD (Nat Cell Biol. 2013; 15:895-904; dilated cardiomyopathy). Interestingly, we observed a relative 45% reduction in cardiomyocyte telomere length in our mdx/mTRKO animals (3 animals per group, N = 300-400) as well as patient samples (4 DMD patient samples, N = 40-95). Here we present new evidence of mitochondrial dysfunction and telomere dysfunction.

2019 ◽  
Vol 8 ◽  
pp. 204800401987958
Author(s):  
HR Spaulding ◽  
C Ballmann ◽  
JC Quindry ◽  
MB Hudson ◽  
JT Selsby

Background Duchenne muscular dystrophy is a muscle wasting disease caused by dystrophin gene mutations resulting in dysfunctional dystrophin protein. Autophagy, a proteolytic process, is impaired in dystrophic skeletal muscle though little is known about the effect of dystrophin deficiency on autophagy in cardiac muscle. We hypothesized that with disease progression autophagy would become increasingly dysfunctional based upon indirect autophagic markers. Methods Markers of autophagy were measured by western blot in 7-week-old and 17-month-old control (C57) and dystrophic (mdx) hearts. Results Counter to our hypothesis, markers of autophagy were similar between groups. Given these surprising results, two independent experiments were conducted using 14-month-old mdx mice or 10-month-old mdx/Utrn± mice, a more severe model of Duchenne muscular dystrophy. Data from these animals suggest increased autophagosome degradation. Conclusion Together these data suggest that autophagy is not impaired in the dystrophic myocardium as it is in dystrophic skeletal muscle and that disease progression and related injury is independent of autophagic dysfunction.


1995 ◽  
Vol 17 (3) ◽  
pp. 202-205 ◽  
Author(s):  
Hirotoshi Kinoshita ◽  
Yu-ichi Goto ◽  
Mitsuru Ishikawa ◽  
Tetsuya Uemura ◽  
Kouichi Matsumoto ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 648
Author(s):  
Andrea L. Reid ◽  
Matthew S. Alexander

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a pathogenic disruption of the DYSTROPHIN gene that results in non-functional dystrophin protein. DMD patients experience loss of ambulation, cardiac arrhythmia, metabolic syndrome, and respiratory failure. At the molecular level, the lack of dystrophin in the muscle results in myofiber death, fibrotic infiltration, and mitochondrial dysfunction. There is no cure for DMD, although dystrophin-replacement gene therapies and exon-skipping approaches are being pursued in clinical trials. Mitochondrial dysfunction is one of the first cellular changes seen in DMD myofibers, occurring prior to muscle disease onset and progresses with disease severity. This is seen by reduced mitochondrial function, abnormal mitochondrial morphology and impaired mitophagy (degradation of damaged mitochondria). Dysfunctional mitochondria release high levels of reactive oxygen species (ROS), which can activate pro-inflammatory pathways such as IL-1β and IL-6. Impaired mitophagy in DMD results in increased inflammation and further aggravates disease pathology, evidenced by increased muscle damage and increased fibrosis. This review will focus on the critical interplay between mitophagy and inflammation in Duchenne muscular dystrophy as a pathological mechanism, as well as describe both candidate and established therapeutic targets that regulate these pathways.


Author(s):  
Ray Mitchell ◽  
Norman E Frederick ◽  
Emily R Holzman ◽  
Francesca Agobe ◽  
Heather C M Allaway ◽  
...  

Dilated cardiomyopathy contributes to morbidity and mortality in Duchenne Muscular Dystrophy (DMD), an inheritable muscle wasting disease caused by a mutation in the dystrophin gene. Preclinical studies in mouse models of muscular dystrophy have demonstrated reduced cardiomyopathy and improved cardiac function following oral treatment with the potent and selective thromboxane A2/prostanoid receptor (TPr) antagonist, ifetroban. Further, a phase 2 clinical trial (NCT03340675, Cumberland Pharmaceutical) is currently recruiting subjects to determine if ifetroban can improve cardiac function in patients with DMD. Although TPr is a promising therapeutic target for the treatment of dilated cardiomyopathy in DMD, little is known about TPr function in coronary arteries that perfuse blood through the cardiac tissue. In the current study, isolated coronary arteries from young (~3-5 months) and aged (~9-12 months) mdx mice, a widely used mouse model of DMD, and age-matched controls were examined using wire myography. Vasoconstriction to increasing concentrations of TPr agonist U-46619(U4) was enhanced in young mdx mice versus controls. Additionally, young mdx mice displayed a significant attenuation in endothelial cell-mediated vasodilation to increasing concentrations of the muscarinic agonist acetylcholine (ACh). Since TPr activation was enhanced in young mdx mice, U4-mediated vasoconstriction was measured in the absence and presence of ifetroban. Ifetroban reduced U4-mediated vasoconstriction in young mdx and both aged mdx and control mice. Overall, our data demonstrate enhanced coronary arterial vasoconstriction to TPr activation in young mdx mice, a phenotype that could be reversed with ifetroban. These data could have important therapeutic implications for improving cardiovascular function in DMD.


2020 ◽  
Vol 28 (3) ◽  
pp. 845-854 ◽  
Author(s):  
Nalinda B. Wasala ◽  
Yongping Yue ◽  
William Lostal ◽  
Lakmini P. Wasala ◽  
Nandita Niranjan ◽  
...  

2017 ◽  
Author(s):  
Mark A. Aminzadeh ◽  
Russell G. Rogers ◽  
Kenneth Gouin ◽  
Mario Fournier ◽  
Rachel E. Tobin ◽  
...  

Genetic deficiency of dystrophin leads to disability and premature death in Duchenne muscular dystrophy, affecting the heart as well as skeletal muscle. Here we report that cardiosphere-derived cells (CDCs), which are being tested clinically for the treatment of Duchenne cardiomyopathy, improve cardiac and skeletal myopathy in the mdx mouse model of DMD and in human Duchenne cardiomyocytes. Injection of CDCs into the hearts of mdx mice augments cardiac function, ambulatory capacity and survival. Exosomes secreted by human CDCs reproduce the benefits of CDCs in mdx mice and in human Duchenne cardiomyocytes. The findings further motivate the testing of CDCs in Duchenne patients, while identifying exosomes as next-generation therapeutic candidates.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Nicolette Johnson ◽  
Jennifer Levy ◽  
Isabella Grumbach ◽  
Mark Anderson ◽  
Kevin Campbell

Sign in / Sign up

Export Citation Format

Share Document