Abstract W MP81: Excess Salt Increases Infarct Size Produced by Photothrombotic Middle Cerebral Artery Occlusion Without Increasing Blood Pressure in Spontaneously Hypertensive Rats

Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Hiroshi Yao ◽  
Toru Nabika

Background and Purpose: Cerebral circulation is known to be vulnerable to excess salt (e.g., impaired vasodilation, increased oxidative stress, accelerated spontaneous stroke, and enhanced blood-brain barrier [BBB] disruption). To our knowledge, however, no study has investigated the effects of excess salt on focal ischemic injury. Methods: After 14 days of salt loading or water, spontaneously hypertensive rats (SHR, Izumo strain, n=43) or normotensive Wistar-Kyoto rats (WKY, n=11) were subjected to photothrombotic middle cerebral artery occlusion (MCAO), and infarct volume was determined at 48 h after MCAO. Brain albumin and hemoglobin contents, as indices of BBB disruption, were determined with SELDI-TOF-MS in ischemic brain tissue. Effects of excess salt on the lower limits of cerebral blood flow (CBF) autoregulation were also determined. Results: Two-way analysis of variance confirmed a significant effect of saline on the volumes of drinking in SHR (p=0.000). Resting mean arterial blood pressure (BP) in SHR was 137±15 (S.D.) mmHg and 141±7 mmHg in the salt loading and control groups, respectively. After MCAO, regional CBF, determined with two ways of laser-Doppler flowmetry (one-point measurement or manual scanning), was more steeply decreased in the salt-loaded group than in the control group. In SHR, infarct volume in the salt-loaded group was 112±27 mm3, which was significantly larger than 77±12 mm3 in the control group (p=0.002), while albumin and hemoglobin levels in discrete brain regions were not different between the groups. In WKY, salt loading did not significantly increase infarct size. CBF response to hemorrhagic hypotension (i.e., autoregulation) was not affected by excess salt. Conclusions: We demonstrated that excess salt increased infarct size produced by photothrombotic MCAO without increasing BP in SHR but not in WKY. Excess salt did not deteriorate both vasogenic edema and hemorrhagic transformation of ischemic brain tissue after MCAO. The detrimental effects of excess salt were considered to be the result of compromised CBF in the ischemic brain tissue supplied by collateral circulation. A future study will investigate the mechanisms underlying the salt sensitivity to focal brain ischemia independent of BP changes.

Radiology ◽  
2007 ◽  
Vol 243 (3) ◽  
pp. 720-726 ◽  
Author(s):  
Imanuel Dzialowski ◽  
Ernst Klotz ◽  
Sophia Goericke ◽  
Arnd Doerfler ◽  
Michael Forsting ◽  
...  

2010 ◽  
Vol 31 (3) ◽  
pp. 807-818 ◽  
Author(s):  
Niall J J MacDougall ◽  
Keith W Muir

Poststroke hyperglycaemia (PSH) is common, has an unclear pathophysiology, and is associated with poor outcomes. Animal studies report conflicting findings. We systematically reviewed the effects of hyperglycaemia on infarct volume in middle cerebral artery occlusion (MCAO) models, generating weighted mean differences between groups using random effects models summarised as effect size (normalised to control group infarct volume as 100%) and 95% confidence interval. Of 72 relevant papers, 23 reported infarct volume. Studies involved 664 animals and 35 distinct comparisons. Hyperglycaemia was induced by either streptozotocin (STZ, 17 comparisons, n=303) or dextrose (18 comparisons, n=356). Hyperglycaemic animals had infarcts that were 94% larger, but STZ was associated with significantly greater increase in infarct volumes than dextrose infusion (140% larger versus 48% larger). In seven studies, insulin did not significantly reduce infarct size and results were heterogeneous. Although hyperglycaemia exacerbates infarct volume in MCAO models, studies are heterogeneous, and do not address the common clinical problem of PSH because they have used either the STZ model of type I diabetes or extremely high glucose loads. Insulin had a nonsignificant and significantly heterogeneous effect. Further studies with relevant models may inform clinical trial design.


2020 ◽  
Vol 11 (1) ◽  
pp. 48-59
Author(s):  
Martin Juenemann ◽  
Tobias Braun ◽  
Nadine Schleicher ◽  
Mesut Yeniguen ◽  
Patrick Schramm ◽  
...  

AbstractObjectiveThis study was designed to investigate the indirect neuroprotective properties of recombinant human erythropoietin (rhEPO) pretreatment in a rat model of transient middle cerebral artery occlusion (MCAO).MethodsOne hundred and ten male Wistar rats were randomly assigned to four groups receiving either 5,000 IU/kg rhEPO intravenously or saline 15 minutes prior to MCAO and bilateral craniectomy or sham craniectomy. Bilateral craniectomy aimed at elimination of the space-consuming effect of postischemic edema. Diagnostic workup included neurological examination, assessment of infarct size and cerebral edema by magnetic resonance imaging, wet–dry technique, and quantification of hemispheric and local cerebral blood flow (CBF) by flat-panel volumetric computed tomography.ResultsIn the absence of craniectomy, EPO pretreatment led to a significant reduction in infarct volume (34.83 ± 9.84% vs. 25.28 ± 7.03%; p = 0.022) and midline shift (0.114 ± 0.023 cm vs. 0.083 ± 0.027 cm; p = 0.013). We observed a significant increase in regional CBF in cortical areas of the ischemic infarct (72.29 ± 24.00% vs. 105.53 ± 33.10%; p = 0.043) but not the whole hemispheres. Infarct size-independent parameters could not demonstrate a statistically significant reduction in cerebral edema with EPO treatment.ConclusionsSingle-dose pretreatment with rhEPO 5,000 IU/kg significantly reduces ischemic lesion volume and increases local CBF in penumbral areas of ischemia 24 h after transient MCAO in rats. Data suggest indirect neuroprotection from edema and the resultant pressure-reducing and blood flow-increasing effects mediated by EPO.


Stroke ◽  
2020 ◽  
Vol 51 (10) ◽  
pp. 3138-3141
Author(s):  
Bharath Chelluboina ◽  
Taehee Kim ◽  
Suresh L. Mehta ◽  
Joo-Yong Kim ◽  
Saivenkateshkomal Bathula ◽  
...  

Background and Purpose: Increased expression of α-Syn (α-Synuclein) is known to mediate secondary brain damage after stroke. We presently studied if α-Syn knockdown can protect ischemic brain irrespective of sex and age. Methods: Adult and aged male and female mice were subjected to transient middle cerebral artery occlusion. α-Syn small interfering RNA (siRNA) was administered intravenous at 30 minutes or 3 hour reperfusion. Poststroke motor deficits were evaluated between day 1 and 7 and infarct volume was measured at day 7 of reperfusion. Results: α-Syn knockdown significantly decreased poststroke brain damage and improved poststroke motor function recovery in adult and aged mice of both sexes. However, the window of therapeutic opportunity for α-Syn siRNA is very limited. Conclusions: α-Syn plays a critical role in ischemic brain damage and preventing α-Syn protein expression early after stroke minimizes poststroke brain damage leading to better functional outcomes irrespective of age and sex.


2004 ◽  
Vol 24 (3) ◽  
pp. 298-304 ◽  
Author(s):  
Hilary V Carswell ◽  
Deborah Bingham ◽  
Kirsty Wallace ◽  
M Nilsen ◽  
David I Graham ◽  
...  

We previously reported that during pro-estrus (high endogenous estrogen levels), brain damage after middle cerebral artery occlusion (MCAO) was reduced in stroke-prone spontaneously hypertensive rats (SHRSP) but not in normotensive Wistar Kyoto rat (WKY). In the present study, we examined the effect of exogenous estrogen on brain damage after MCAO in SHRSP and WKY. A 17β-estradiol (0.025mg or 0.25mg, 21 day release) or matching placebo pellet was implanted into ovariectomized WKY and SHRSP (3 to 4 months old) who then underwent distal diathermy-induced MCAO 2 weeks later. Plasma 17β-estradiol levels for placebo and 17β-estradiol groups were as follows: WKY 0.025 mg 16.4 ± 8.5 (pg/mL, mean ± SD) and 25.85 ± 12.6; WKY 0.25 mg 18.2 ± 9.0 and 69.8 ± 27.4; SHRSP 0.25 mg 20.7 ± 8.8 and 81.0 ± 16.9. In SHRSP, infarct volumes at 24 hours after MCAO were similar in placebo and 17β-estradiol groups: SHRSP 0.025 mg 126.7 ± 15.3 mm3 (n = 6) and 114.0 ± 14.1 mm3 (n = 8) (not significant); SHRSP 0.25 mg 113.5 ± 22.3 mm3 (n = 8) and 129.7 ± 26.2 mm3 (n = 7) (not significant), respectively. In WKY, 17β-estradiol significantly increased infarct volume by 65% with 0.025mg dose [36.1 ± 20.7 mm3 (n = 8) and 59.7 ± 19.3 mm3 (n = 8) ( P = 0.033, unpaired t-test)] and by 96% with 0.25 mg dose [55.9 ± 36.4 mm3 (n = 8) and 109.7 ± 6.7 mm3 (n = 4) ( P = 0.017)]. Thus, 17β-estradiol increased stroke damage in normotensive rats with no significant effect in stroke-prone rats. Despite being contrary to our hypothesis, our findings add substance to the recently reported negative effects of 17β-estradiol in clinical studies.


1991 ◽  
Vol 11 (6) ◽  
pp. 1025-1030 ◽  
Author(s):  
Yoshio Izumi ◽  
Simon Roussel ◽  
Elisabeth Pinard ◽  
Jacques Seylaz

The effects of magnesium, an endogenous inhibitor of calcium entry into neurons, upon ischemic brain damage were investigated using a well-characterized model of focal cerebral ischemia in rats. Infarct volumes were determined by 2,3,5-triphenyltetrazolium chloride transcardiac perfusion 48 h after middle cerebral artery (MCA) occlusion. The area of ischemic damage was quantified by image analysis in coronal sections taken every 0.5 mm. MgCl2 (1 mmol/kg) was injected intraperitoneally just after MCA occlusion and again 1 h later. Posttreatment with MgCl2 (16 control and 16 treated rats) significantly reduced the cortical infarct volume. Compensation for the hyperglycemic effect of MgCl2 with insulin (17 rats) further reduced the infarct volume in the neocortex. No systemic effects of either treatment could account for the observed neuroprotection.


1997 ◽  
Vol 17 (5) ◽  
pp. 500-506 ◽  
Author(s):  
Wolf-R. Schäbitz ◽  
Stefan Schwab ◽  
Matthias Spranger ◽  
Werner Hacke

Brain-derived neurotrophic factor (BDNF), acting through the high-affinity receptor tyrosine kinase (TrkB), is widely distributed throughout the central nervous system and displays in vitro trophic effects on a wide range of neuronal cells, including hippocampal, cerebellar, and cortical neurons. In vivo, BDNF rescues motorneurons, hippocampal, and substantia nigral dopaminergic cells from traumatic and toxic brain injury. After transient middle cerebral artery occlusion (MCAO), upregulation of BDNF-mRNA in cortical neurons suggests that BDNF potentially plays a neuroprotective role in focal cerebral ischemia. In the current study, BDNF (2.1 μg/d) in vehicle or vehicle alone (controls) was delivered intraventricularly for 8 days, beginning 24 hours before permanent middle cerebral artery occlusion by intraluminal suture in Wistar rats (n = 13 per group). There were no differences in physiological variables recorded during surgery for the two groups. Neurological deficit (0 to 4 scale), which was assessed on a daily basis, improved in BDNF-treated animals compared with controls ( P < 0.05; analysis of variance and Scheffe's test). There were no significant differences in weight in BDNF-treated animals and controls during the experiment. After elective killing on day 7 after MCAO, brains underwent 2,3,5-triphenyltetrazolium chloride staining for calculation of the infarct volume and for histology (hematoxylin and eosin and glial fibrillary acid protein). The mean total infarct volume was 83.1 ± 27.1 mm3 in BDNF-treated animals and 139.2 ± 56.4 mm3 in controls (mean ± SD; P < 0.01, unpaired, two-tailed t-test). The cortical infarct volume was 10.8 ± 7.1 mm3 in BDNF-treated animals and 37.9 ± 19.8 mm3 in controls (mean ± SD; P < 0.05; unpaired, two-tailed t-test), whereas ischemic lesion volume in caudoputaminal infarction was not significantly different. These results show that pretreatment with intraventricular BDNF reduces infarct size after focal cerebral ischemia in rats and support the hypothesis of a neuroprotective role for BDNF in stoke.


Sign in / Sign up

Export Citation Format

Share Document