Abstract TMP28: Inhibition of Integrin α 5 β 1 With the Small Peptide Atn-161 Reduces Infarct Volume and Improves Functional Recovery Through Reduction of Blood-brain Barrier Permeability

Stroke ◽  
2018 ◽  
Vol 49 (Suppl_1) ◽  
Author(s):  
Danielle Edwards ◽  
Kathleen Salmeron ◽  
Justin F Fraser ◽  
Gregory J Bix
2010 ◽  
Vol 10 ◽  
pp. 1180-1191 ◽  
Author(s):  
Fatemeh Mohagheghi ◽  
Mohammad Reza Bigdeli ◽  
Bahram Rasoulian ◽  
Ali Asghar Zeinanloo ◽  
Ali Khoshbaten

Recent studies suggest that dietary virgin olive oil (VOO) reduces hypoxia-reoxygenation injury in rat brain slices. We sought to extend these observations in anin vivostudy of rat cerebral ischemia-reperfusion injury. Four groups, each consisting of 18 Wistar rats, were studied. One group (control) received saline, while three treatment groups received oral VOO (0.25, 0.5, and 0.75 mL/kg/day, respectively). After 30 days, blood lipid profiles were determined, before a 60-min period of middle cerebral artery occlusion (MCAO). After 24-h reperfusion, neurological deficit scores, infarct volume, brain edema, and blood brain barrier permeability were each assessed in subgroups of six animals drawn from each main group. VOO reduced the LDL/HDL ratio in doses of 0.25, 0.5, and 0.75 mL/kg/day in comparison to the control group (p< 0.05), and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 0.25 vs. 0.5 vs. 0.75 mL/kg/day, attenuated corrected infarct volumes were 207.82 ± 34.29 vs. 206.41 ± 26.23 vs. 124.21 ± 14.73 vs. 108.46 ± 31.63 mm3; brain water content of the infarcted hemisphere was 82 ±± 0.25 vs. 81.5 ± 0.56 vs. 80.5 ± 0.22 vs. 80.5 ± 0.34%; and blood brain barrier permeability of the infarcted hemisphere was 11.31 ± 2.67 vs. 9.21 ± 2.28 vs. 5.83 ± 1.6 vs. 4.43 ± 0.93 µg/g tissue (p< 0.05 for measures in doses 0.5 and 0.75 mL/kg/day vs. controls). Oral administration of VOO reduces infarct volume, brain edema, blood brain barrier permeability, and improves neurologic deficit scores after transient MCAO in rats.


2018 ◽  
Vol 25 (9) ◽  
pp. 1073-1089 ◽  
Author(s):  
Santiago Vilar ◽  
Eduardo Sobarzo-Sanchez ◽  
Lourdes Santana ◽  
Eugenio Uriarte

Background: Blood-brain barrier transport is an important process to be considered in drug candidates. The blood-brain barrier protects the brain from toxicological agents and, therefore, also establishes a restrictive mechanism for the delivery of drugs into the brain. Although there are different and complex mechanisms implicated in drug transport, in this review we focused on the prediction of passive diffusion through the blood-brain barrier. Methods: We elaborated on ligand-based and structure-based models that have been described to predict the blood-brain barrier permeability. Results: Multiple 2D and 3D QSPR/QSAR models and integrative approaches have been published to establish quantitative and qualitative relationships with the blood-brain barrier permeability. We explained different types of descriptors that correlate with passive diffusion along with data analysis methods. Moreover, we discussed the applicability of other types of molecular structure-based simulations, such as molecular dynamics, and their implications in the prediction of passive diffusion. Challenges and limitations of experimental measurements of permeability and in silico predictive methods were also described. Conclusion: Improvements in the prediction of blood-brain barrier permeability from different types of in silico models are crucial to optimize the process of Central Nervous System drug discovery and development.


Sign in / Sign up

Export Citation Format

Share Document