Abstract WMP15: Automated Volumetric Assessment of Infarct Core in Non-Contrast Computed Tomography in Patients With Acute Ischemic Stroke Secondary to Large Vessel Occlusion
Introduction: Perfusion imaging has emerged as an imaging tool to select patients with acute ischemic stroke (AIS) secondary to large vessel occlusion (LVO) for endovascular treatment (EVT). We aim to compare an automated method to assess the infarct ischemic core (IC) in Non-Contrast Computed Tomography (NCCT) with Computed Tomography Perfusion (CTP) imaging and its ability to predict functional outcome and final infarct volume (FIV). Methods: 494 patients with anterior circulation stroke treated with EVT were included. Volumetric assessment of IC in NCCT (eA-IC) was calculated using eASPECTS™ (Brainomix, Oxford). CTP was processed using availaible software considering CTP-IC as volume of Cerebral Blood Flow (CBF) <30% comparing with the contralateral hemisphere. FIV was calculated in patients with complete recanalization using a semiautomated method with a NCCT performed 48-72 hours after EVT. Complete recanalization was considered as modified Thrombolysis In Cerebral Ischemia (mTICI) ≥2B after EVT. Good functional outcome was defined as modified Rankin score (mRs) ≤2 at 90 days. Statistical analysis was performed to assess the correlation between EA-IC and CTP-IC and its ability to predict prognosis and FIV. Results: Median eA-IC and CTP-IC were 16 (IQR 7-31) and 8 (IQR 0-28), respectively. 419 patients (85%) achieved complete recanalization, and their median FIV was 17.5cc (IQR 5-52). Good functional outcome was achieved in 230 patients (47%). EA-IC and CTP-IC had moderate correlation between them (r=0.52, p<0.01) and similar correlation with FIV (r=0.52 and 0.51, respectively, p<0.01). Using ROC curves, both methods had similar performance in its ability to predict good functional outcome (EA-IC AUC 0.68 p<0.01, CTP-IC AUC 0.66 p<0.01). Multivariate analysis adjusted by confounding factors showed that eA-IC and CTP-IC predicted good functional outcome (for every 10cc and >40cc, OR 1.5, IC1.3-1.8, p<0.01 and OR 1.3, IC1.1-1.5, p<0.01, respectively). Conclusion: Automated volumetric assessment of infarct core in NCCT has similar performance predicting prognosis and final infarct volume than CTP. Prospective studies should evaluate a NCCT-core / vessel occlusion penumbra missmatch as an alternative method to select patients for EVT.