scholarly journals Identifying Hypoperfusion in Moyamoya Disease With Arterial Spin Labeling and an [ 15 O]-Water Positron Emission Tomography/Magnetic Resonance Imaging Normative Database

Stroke ◽  
2019 ◽  
Vol 50 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Audrey P. Fan ◽  
Mohammad M. Khalighi ◽  
Jia Guo ◽  
Yosuke Ishii ◽  
Jarrett Rosenberg ◽  
...  
2014 ◽  
Vol 34 (8) ◽  
pp. 1373-1380 ◽  
Author(s):  
Ke Zhang ◽  
Hans Herzog ◽  
Jörg Mauler ◽  
Christian Filss ◽  
Thomas W Okell ◽  
...  

Until recently, no direct comparison between [15O]water positron emission tomography (PET) and arterial spin labeling (ASL) for measuring cerebral blood flow (CBF) was possible. With the introduction of integrated, hybrid magnetic resonance (MR)-PET scanners, such a comparison becomes feasible. This study presents results of CBF measurements recorded simultaneously with [15O]water and ASL. A 3T MR-BrainPET scanner was used for the simultaneous acquisition of pseudo-continuous ASL (pCASL) magnetic resonance imaging (MRI) and [15O]water PET. Quantitative CBF values were compared in 10 young healthy male volunteers at baseline conditions. A statistically significant ( P<0.05) correlation was observed between the two modalities; the whole-brain CBF values determined with PET and pCASL were 43.3 ±6.1 mL and 51.9 ± 7.1 mL per 100 g per minute, respectively. The gray/white matter (GM/WM) ratio of CBF was 3.0 for PET and 3.4 for pCASL. A paired t-test revealed differences in regional CBF between ASL and PET with higher ASL-CBF than PET-CBF values in cortical areas. Using an integrated, hybrid MR-PET a direct simultaneous comparison between ASL and [15O]water PET became possible for the first time so that temporal, physiologic, and functional variations were avoided. Regional and individual differences were found despite the overall similarity between ASL and PET, requiring further detailed investigations.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sangwoo Kim ◽  
Youngjeon Lee ◽  
Chang-Yeop Jeon ◽  
Yeung Bae Jin ◽  
Sukhoon Oh ◽  
...  

Abstract Background Although the thalamus is known to modulate basal ganglia function related to motor control activity, the abnormal changes within the thalamus during distinct medical complications have been scarcely investigated. In order to explore the feasibility of assessing iron accumulation in the thalamus as an informative biomarker for Parkinson’s disease (PD), this study was designed to employ quantitative susceptibility mapping using a 7 T magnetic resonance imaging system in cynomolgus monkeys. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-injected cynomolgus monkey and a healthy control (HC) were examined by 7 T magnetic resonance imaging. Positron emission tomography with 18F-N-(3-fluoro propyl)-2ß-carboxymethoxy-3ß-(4-iodophenyl) nortropane was also employed to identify the relationship between iron deposits and dopamine depletion. All acquired values were averaged within the volume of interest of the nigrostriatal pathway. Findings Compared with the HC, the overall elevation of iron deposition within the thalamus in the Parkinson’s disease model (about 53.81% increase) was similar to that in the substantia nigra (54.81%) region. Substantial susceptibility changes were observed in the intralaminar part of the thalamus (about 70.78% increase). Additionally, we observed that in the Parkinson’s disease model, binding potential values obtained from positron emission tomography were considerably decreased in the thalamus (97.51%) and substantia nigra (92.48%). Conclusions The increased iron deposition in the thalamus showed negative correlation with dopaminergic activity in PD, supporting the idea that iron accumulation affects glutaminergic inputs and dopaminergic neurons. This investigation indicates that the remarkable susceptibility changes in the thalamus could be an initial major diagnostic biomarker for Parkinson’s disease-related motor symptoms.


Sign in / Sign up

Export Citation Format

Share Document