scholarly journals On the Hardness of Offline Multi-objective Optimization

2007 ◽  
Vol 15 (4) ◽  
pp. 475-491 ◽  
Author(s):  
Olivier Teytaud

It has been empirically established that multiobjective evolutionary algorithms do not scale well with the number of conflicting objectives. This paper shows that the convergence rate of all comparison-based multi-objective algorithms, for the Hausdorff distance, is not much better than the convergence rate of the random search under certain conditions. The number of objectives must be very moderate and the framework should hold the following assumptions: the objectives are conflicting and the computational cost is lower bounded by the number of comparisons is a good model. Our conclusions are: (i) the number of conflicting objectives is relevant (ii) the criteria based on comparisons with random-search for multi-objective optimization is also relevant (iii) having more than 3-objectives optimization is very hard. Furthermore, we provide some insight into cross-over operators.

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3065 ◽  
Author(s):  
Ying Liu ◽  
Qingsha S. Cheng ◽  
Slawomir Koziel

In this article, a generalized sequential domain patching (GSDP) method for efficient multi-objective optimization based on electromagnetics (EM) simulation is proposed. The GSDP method allowing fast searching for Pareto fronts for two and three objectives is elaborated in detail in this paper. The GSDP method is compared with the NSGA-II method using multi-objective problems in the DTLZ series, and the results show the GSDP method saved computational cost by more than 85% compared to NSGA-II method. A diversity comparison indicator (DCI) is used to evaluate approximate Pareto fronts. The comparison results show the diversity performance of GSDP is better than that of NSGA-II in most cases. We demonstrate the proposed GSDP method using a practical multi-objective design example of EM-based UWB antenna for IoT applications.


Author(s):  
Lu Chen ◽  
◽  
Bin Xin ◽  
Jie Chen ◽  
◽  
...  

Multi-objective optimization problems involve two or more conflicting objectives, and they have a set of Pareto optimal solutions instead of a single optimal solution. In order to support the decision maker (DM) to find his/her most preferred solution, we propose an interactive multi-objective optimization method based on the DM’s preferences in the form of indifference tradeoffs. The method combines evolutionary algorithms with the gradient-based interactive step tradeoff (GRIST) method. An evolutionary algorithm is used to generate an approximate Pareto optimal solution at each iteration. The DM is asked to provide indifference tradeoffs whose projection onto the tangent hyperplane of the Pareto front provides a tradeoff direction. An approach for approximating the normal vector of the tangent hyperplane is proposed which is used to calculate the projection. A water quality management problem is used to demonstrate the interaction process of the interactive method. In addition, three benchmark problems are used to test the accuracy of the normal vector approximation approach and compare the proposed method with GRIST.


2019 ◽  
Vol 10 (1) ◽  
pp. 15-37 ◽  
Author(s):  
Muneendra Ojha ◽  
Krishna Pratap Singh ◽  
Pavan Chakraborty ◽  
Shekhar Verma

Multi-objective optimization algorithms using evolutionary optimization methods have shown strength in solving various problems using several techniques for producing uniformly distributed set of solutions. In this article, a framework is presented to solve the multi-objective optimization problem which implements a novel normalized dominance operator (ND) with the Pareto dominance concept. The proposed method has a lesser computational cost as compared to crowding-distance-based algorithms and better convergence. A parallel external elitist archive is used which enhances spread of solutions across the Pareto front. The proposed algorithm is applied to a number of benchmark multi-objective test problems with up to 10 objectives and compared with widely accepted aggregation-based techniques. Experiments produce a consistently good performance when applied to different recombination operators. Results have further been compared with other established methods to prove effective convergence and scalability.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Saúl Zapotecas-Martínez ◽  
Abel García-Nájera ◽  
Adriana Menchaca-Méndez

One of the major limitations of evolutionary algorithms based on the Lebesgue measure for multi-objective optimization is the computational cost required to approximate the Pareto front of a problem. Nonetheless, the Pareto compliance property of the Lebesgue measure makes it one of the most investigated indicators in the designing of indicator-based evolutionary algorithms (IBEAs). The main deficiency of IBEAs that use the Lebesgue measure is their computational cost which increases with the number of objectives of the problem. On this matter, the investigation presented in this paper introduces an evolutionary algorithm based on the Lebesgue measure to deal with box-constrained continuous multi-objective optimization problems. The proposed algorithm implicitly uses the regularity property of continuous multi-objective optimization problems that has suggested effectiveness when solving continuous problems with rough Pareto sets. On the other hand, the survival selection mechanism considers the local property of the Lebesgue measure, thus reducing the computational time in our algorithmic approach. The emerging indicator-based evolutionary algorithm is examined and compared versus three state-of-the-art multi-objective evolutionary algorithms based on the Lebesgue measure. In addition, we validate its performance on a set of artificial test problems with various characteristics, including multimodality, separability, and various Pareto front forms, incorporating concavity, convexity, and discontinuity. For a more exhaustive study, the proposed algorithm is evaluated in three real-world applications having four, five, and seven objective functions whose properties are unknown. We show the high competitiveness of our proposed approach, which, in many cases, improved the state-of-the-art indicator-based evolutionary algorithms on the multi-objective problems adopted in our investigation.


2021 ◽  
Vol 1 (4) ◽  
pp. 1-26
Author(s):  
Faramarz Khosravi ◽  
Alexander Rass ◽  
Jürgen Teich

Real-world problems typically require the simultaneous optimization of multiple, often conflicting objectives. Many of these multi-objective optimization problems are characterized by wide ranges of uncertainties in their decision variables or objective functions. To cope with such uncertainties, stochastic and robust optimization techniques are widely studied aiming to distinguish candidate solutions with uncertain objectives specified by confidence intervals, probability distributions, sampled data, or uncertainty sets. In this scope, this article first introduces a novel empirical approach for the comparison of candidate solutions with uncertain objectives that can follow arbitrary distributions. The comparison is performed through accurate and efficient calculations of the probability that one solution dominates the other in terms of each uncertain objective. Second, such an operator can be flexibly used and combined with many existing multi-objective optimization frameworks and techniques by just substituting their standard comparison operator, thus easily enabling the Pareto front optimization of problems with multiple uncertain objectives. Third, a new benchmark for evaluating uncertainty-aware optimization techniques is introduced by incorporating different types of uncertainties into a well-known benchmark for multi-objective optimization problems. Fourth, the new comparison operator and benchmark suite are integrated into an existing multi-objective optimization framework that features a selection of multi-objective optimization problems and algorithms. Fifth, the efficiency in terms of performance and execution time of the proposed comparison operator is evaluated on the introduced uncertainty benchmark. Finally, statistical tests are applied giving evidence of the superiority of the new comparison operator in terms of \epsilon -dominance and attainment surfaces in comparison to previously proposed approaches.


Author(s):  
Zhenkun Wang ◽  
Qingyan Li ◽  
Qite Yang ◽  
Hisao Ishibuchi

AbstractIt has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the $$\epsilon $$ ϵ -dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF.


Sign in / Sign up

Export Citation Format

Share Document