scholarly journals Familiarity Increases Processing Speed in the Visual System

2020 ◽  
Vol 32 (4) ◽  
pp. 722-733 ◽  
Author(s):  
Mariya E. Manahova ◽  
Eelke Spaak ◽  
Floris P. de Lange

Familiarity with a stimulus leads to an attenuated neural response to the stimulus. Alongside this attenuation, recent studies have also observed a truncation of stimulus-evoked activity for familiar visual input. One proposed function of this truncation is to rapidly put neurons in a state of readiness to respond to new input. Here, we examined this hypothesis by presenting human participants with target stimuli that were embedded in rapid streams of familiar or novel distractor stimuli at different speeds of presentation, while recording brain activity using magnetoencephalography and measuring behavioral performance. We investigated the temporal and spatial dynamics of signal truncation and whether this phenomenon bears relationship to participants' ability to categorize target items within a visual stream. Behaviorally, target categorization performance was markedly better when the target was embedded within familiar distractors, and this benefit became more pronounced with increasing speed of presentation. Familiar distractors showed a truncation of neural activity in the visual system. This truncation was strongest for the fastest presentation speeds and peaked in progressively more anterior cortical regions as presentation speeds became slower. Moreover, the neural response evoked by the target was stronger when this target was preceded by familiar distractors. Taken together, these findings demonstrate that item familiarity results in a truncated neural response, is associated with stronger processing of relevant target information, and leads to superior perceptual performance.

2019 ◽  
Author(s):  
Mariya E. Manahova ◽  
Eelke Spaak ◽  
Floris P. de Lange

AbstractFamiliarity with a stimulus leads to an attenuated neural response to the stimulus. Alongside this attenuation, recent studies have also observed a truncation of stimulus-evoked activity for familiar visual input. One proposed function of this truncation is to rapidly put neurons in a state of readiness to respond to new input. Here, we examined this hypothesis by presenting human participants with target stimuli that were embedded in rapid streams of familiar or novel distractor stimuli at different speeds of presentation, while recording brain activity using magnetoencephalography (MEG) and measuring behavioral performance. We investigated the temporal and spatial dynamics of signal truncation and whether this phenomenon bears relationship to participants’ ability to categorize target items within a visual stream. Behaviorally, target categorization performance was markedly better when the target was embedded within familiar distractors, and this benefit became more pronounced with increasing speed of presentation. Familiar distractors showed a truncation of neural activity in the visual system, and this truncation was strongest for the fastest presentation speeds. Moreover, neural processing of the target was stronger when it was preceded by familiar distractors. Taken together, these findings suggest that truncation of neural responses for familiar items may result in stronger processing of relevant target information, resulting in superior perceptual performance.Significance statementThe visual response to familiar input is attenuated more rapidly than for novel input. Here we find that this truncation of the neural response for familiar input is strongest for very fast image presentations. We also find a tentative function for this truncation: the neural response to a target image that is embedded within distractors is much greater when the distractors are familiar than when they are novel. Similarly, target categorization performance is much better when the target is embedded within familiar distractors, and this advantage is most obvious for very fast image presentations. This suggests that neural truncation helps to rapidly put neurons in a state of readiness to respond to new input.


Author(s):  
Navvab Afrashteh ◽  
Samsoon Inayat ◽  
Edgar Bermudez Contreras ◽  
Artur Luczak ◽  
Bruce L. McNaughton ◽  
...  

AbstractBrain activity propagates across the cortex in diverse spatiotemporal patterns, both as a response to sensory stimulation and during spontaneous activity. Despite been extensively studied, the relationship between the characteristics of such patterns during spontaneous and evoked activity is not completely understood. To investigate this relationship, we compared visual, auditory, and tactile evoked activity patterns elicited with different stimulus strengths and spontaneous activity motifs in lightly anesthetized and awake mice using mesoscale wide-field voltage-sensitive dye and glutamate imaging respectively. The characteristics of cortical activity that we compared include amplitude, speed, direction, and complexity of propagation trajectories in spontaneous and evoked activity patterns. We found that the complexity of the propagation trajectories of spontaneous activity, quantified as their fractal dimension, is higher than the one from sensory evoked responses. Moreover, the speed and direction of propagation, are modulated by the amplitude during both, spontaneous and evoked activity. Finally, we found that spontaneous activity had similar amplitude and speed when compared to evoked activity elicited with low stimulus strengths. However, this similarity gradually decreased when the strength of stimuli eliciting evoked responses increased. Altogether, these findings are consistent with the fact that even primary sensory areas receive widespread inputs from other cortical regions, and that, during rest, the cortex tends to reactivate traces of complex, multi-sensory experiences that may have occurred in a range of different behavioural contexts.


Author(s):  
Tao He ◽  
David Richter ◽  
Zhiguo Wang ◽  
Floris P. de Lange

AbstractBoth spatial and temporal context play an important role in visual perception and behavior. Humans can extract statistical regularities from both forms of context to help processing the present and to construct expectations about the future. Numerous studies have found reduced neural responses to expected stimuli compared to unexpected stimuli, for both spatial and temporal regularities. However, it is largely unclear whether and how these forms of context interact. In the current fMRI study, thirty-three human volunteers were exposed to object stimuli that could be expected or surprising in terms of their spatial and temporal context. We found a reliable independent contribution of both spatial and temporal context in modulating the neural response. Specifically, neural responses to stimuli in expected compared to unexpected contexts were suppressed throughout the ventral visual stream. Interestingly, the modulation by spatial context was stronger in magnitude and more reliable than modulations by temporal context. These results suggest that while both spatial and temporal context serve as a prior that can modulate sensory processing in a similar fashion, predictions of spatial context may be a more powerful modulator in the visual system.Significance StatementBoth temporal and spatial context can affect visual perception, however it is largely unclear if and how these different forms of context interact in modulating sensory processing. When manipulating both temporal and spatial context expectations, we found that they jointly affected sensory processing, evident as a suppression of neural responses for expected compared to unexpected stimuli. Interestingly, the modulation by spatial context was stronger than that by temporal context. Together, our results suggest that spatial context may be a stronger modulator of neural responses than temporal context within the visual system. Thereby, the present study provides new evidence how different types of predictions jointly modulate perceptual processing.


2017 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

2021 ◽  
Vol 13 (6) ◽  
pp. 1180
Author(s):  
Da Guo ◽  
Xiaoning Song ◽  
Ronghai Hu ◽  
Xinming Zhu ◽  
Yazhen Jiang ◽  
...  

The Hindu Kush Himalayan (HKH) region is one of the most ecologically vulnerable regions in the world. Several studies have been conducted on the dynamic changes of grassland in the HKH region, but few have considered grassland net ecosystem productivity (NEP). In this study, we quantitatively analyzed the temporal and spatial changes of NEP magnitude and the influence of climate factors on the HKH region from 2001 to 2018. The NEP magnitude was obtained by calculating the difference between the net primary production (NPP) estimated by the Carnegie–Ames Stanford Approach (CASA) model and the heterotrophic respiration (Rh) estimated by the geostatistical model. The results showed that the grassland ecosystem in the HKH region exhibited weak net carbon uptake with NEP values of 42.03 gC∙m−2∙yr−1, and the total net carbon sequestration was 0.077 Pg C. The distribution of NEP gradually increased from west to east, and in the Qinghai–Tibet Plateau, it gradually increased from northwest to southeast. The grassland carbon sources and sinks differed at different altitudes. The grassland was a carbon sink at 3000–5000 m, while grasslands below 3000 m and above 5000 m were carbon sources. Grassland NEP exhibited the strongest correlation with precipitation, and it had a lagging effect on precipitation. The correlation between NEP and the precipitation of the previous year was stronger than that of the current year. NEP was negatively correlated with temperature but not with solar radiation. The study of the temporal and spatial dynamics of NEP in the HKH region can provide a theoretical basis to help herders balance grazing and forage.


Sign in / Sign up

Export Citation Format

Share Document