A Novel Recurrent Neural Network with Finite-Time Convergence for Linear Programming

2010 ◽  
Vol 22 (11) ◽  
pp. 2962-2978 ◽  
Author(s):  
Qingshan Liu ◽  
Jinde Cao ◽  
Guanrong Chen

In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.

Author(s):  
Zahra Sadat Mirzazadeh ◽  
Javad Banihassan ◽  
Amin Mansoori

Classic linear assignment method is a multi-criteria decision-making approach in which criteria are weighted and each rank is assigned to a choice. In this study, to abandon the requirement of calculating the weight of criteria and use decision attributes prioritizing and also to be able to assign a rank to more than one choice, a multi-objective linear programming (MOLP) method is suggested. The objective function of MOLP is defined for each attribute and MOLP is solved based on absolute priority and comprehensive criteria methods. For solving the linear programming problems we apply a recurrent neural network (RNN). Indeed, the Lyapunov stability of the model is proved. Results of comparing the proposed method with TOPSIS, VICOR, and MOORA methods which are the most common multi-criteria decision schemes show that the proposed approach is more compatible with these methods.


Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document