scholarly journals Analogy-related Information Can be Accessed by Simple Addition and Subtraction of fMRI Activation Patterns, without Participants Performing any Analogy Task

2021 ◽  
pp. 1-41
Author(s):  
Meng-Huan Wu ◽  
Andrew J. Anderson ◽  
Robert A. Jacobs ◽  
Rajeev D.S. Raizada

Abstract Analogical reasoning, e.g. inferring that teacher is to chalk as mechanic is to wrench, plays a fundamental role in human cognition. However, whether brain activity patterns of individual words are encoded in a way that could facilitate analogical reasoning is unclear. Recent advances in computational linguistics have shown that information about analogical problems can be accessed by simple addition and subtraction of word embeddings (e.g., wrench = mechanic + chalk – teacher). Critically, this property emerges in artificial neural networks that were not trained to produce analogies but instead were trained to produce general-purpose semantic representations. Here, we test whether such emergent property can be observed in representations in human brains, as well as in artificial neural networks. fMRI activation patterns were recorded while participants viewed isolated words but did not perform analogical reasoning tasks. Analogy relations were constructed from word pairs that were categorically or thematically related, and we tested whether the predicted fMRI pattern calculated with simple arithmetic was more correlated with the pattern of the target word than other words. We observed that the predicted fMRI patterns contain information not only about the identity of the target word but also its category and theme (e.g., teaching-related). In summary, this study demonstrated that information about analogy questions can be reliably accessed with the addition and subtraction of fMRI patterns, and that, similar to word embeddings, this property holds for task-general patterns elicited when participants were not explicitly told to perform analogical reasoning.

2021 ◽  
pp. 1-44
Author(s):  
Tyler L. Hayes ◽  
Giri P. Krishnan ◽  
Maxim Bazhenov ◽  
Hava T. Siegelmann ◽  
Terrence J. Sejnowski ◽  
...  

Abstract Replay is the reactivation of one or more neural patterns that are similar to the activation patterns experienced during past waking experiences. Replay was first observed in biological neural networks during sleep, and it is now thought to play a critical role in memory formation, retrieval, and consolidation. Replay-like mechanisms have been incorporated in deep artificial neural networks that learn over time to avoid catastrophic forgetting of previous knowledge. Replay algorithms have been successfully used in a wide range of deep learning methods within supervised, unsupervised, and reinforcement learning paradigms. In this letter, we provide the first comprehensive comparison between replay in the mammalian brain and replay in artificial neural networks. We identify multiple aspects of biological replay that are missing in deep learning systems and hypothesize how they could be used to improve artificial neural networks.


Author(s):  
Kobiljon Kh. Zoidov ◽  
◽  
Svetlana V. Ponomareva ◽  
Daniel I. Serebryansky ◽  
◽  
...  

2012 ◽  
Vol 3 (2) ◽  
pp. 48-50
Author(s):  
Ana Isabel Velasco Fernández ◽  
◽  
Ricardo José Rejas Muslera ◽  
Juan Padilla Fernández-Vega ◽  
María Isabel Cepeda González

Sign in / Sign up

Export Citation Format

Share Document