scholarly journals Effects of sleep on language and motor consolidation: Evidence of domain general and specific mechanisms

2021 ◽  
pp. 1-92
Author(s):  
Dafna BenZion ◽  
Ella Gabitov ◽  
Anat Prior ◽  
Tali Bitan

Abstract The current study explores the effects of time and sleep on the consolidation of a novel language learning task containing both item-specific knowledge and the extraction of grammatical regularities. We also compare consolidation effects in language and motor sequence learning tasks, to ask whether consolidation mechanisms are domain general. Young adults learned to apply plural inflections to novel words based on morpho-phonological rules embedded in the input and learned to type a motor sequence using a keyboard. Participants were randomly assigned into one of two groups, practicing each task during the morning or evening hours. Both groups were retested 12 and 24 hrs. post training. Performance on frequent trained items in the language task stabilized only following sleep, consistent with a hippocampal mechanism for item-specific learning. However, regularity extraction, indicated by generalization to untrained items in the linguistic task, as well as performance on motor sequence learning, improved 24 hours post training, irrespective of the timing of sleep. This consolidation process is consistent with a fronto-striatal skill learning mechanism, common across the language and motor domains. This conclusion is further reinforced by cross domain correlations at the individual level between improvement across 24 hours in the motor task and in the low-frequency trained items in the linguistic task, which involve regularity extraction. Taken together, our results at the group and individual levels suggest that some aspects of consolidation are shared across the motor and language domains, and more specifically between motor sequence learning and grammar learning.

2014 ◽  
Vol 111 (3) ◽  
pp. 628-640 ◽  
Author(s):  
Fatemeh Noohi ◽  
Nate B. Boyden ◽  
Youngbin Kwak ◽  
Jennifer Humfleet ◽  
David T. Burke ◽  
...  

Individuals learn new skills at different rates. Given the involvement of corticostriatal pathways in some types of learning, variations in dopaminergic transmission may contribute to these individual differences. Genetic polymorphisms of the catechol- O-methyltransferase (COMT) enzyme and dopamine receptor D2 (DRD2) genes partially determine cortical and striatal dopamine availability, respectively. Individuals who are homozygous for the COMT methionine ( met) allele show reduced cortical COMT enzymatic activity, resulting in increased dopamine levels in the prefrontal cortex as opposed to individuals who are carriers of the valine ( val) allele. DRD2 G-allele homozygotes benefit from a higher striatal dopamine level compared with T-allele carriers. We hypothesized that individuals who are homozygous for COMT met and DRD2 G alleles would show higher rates of motor learning. Seventy-two young healthy females (20 ± 1.9 yr) performed a sensorimotor adaptation task and a motor sequence learning task. A nonparametric mixed model ANOVA revealed that the COMT val-val group demonstrated poorer performance in the sequence learning task compared with the met-met group and showed a learning deficit in the visuomotor adaptation task compared with both met-met and val-met groups. The DRD2 TT group showed poorer performance in the sequence learning task compared with the GT group, but there was no difference between DRD2 genotype groups in adaptation rate. Although these results did not entirely come out as one might predict based on the known contribution of corticostriatal pathways to motor sequence learning, they support the role of genetic polymorphisms of COMT val158met (rs4680) and DRD2 G>T (rs 1076560) in explaining individual differences in motor performance and motor learning, dependent on task type.


2020 ◽  
Author(s):  
N Dolfen ◽  
B R King ◽  
L Schwabe ◽  
M A Gann ◽  
M P Veldman ◽  
...  

Abstract The functional interaction between hippocampo- and striato-cortical regions during motor sequence learning is essential to trigger optimal memory consolidation. Based on previous evidence from other memory domains that stress alters the balance between these systems, we investigated whether exposure to stress prior to motor learning modulates motor memory processes. Seventy-two healthy young individuals were exposed to a stressful or nonstressful control intervention prior to training on a motor sequence learning task in a magnetic resonance imaging (MRI) scanner. Consolidation was assessed with an MRI retest after a sleep episode. Behavioral results indicate that stress prior to learning did not influence motor performance. At the neural level, stress induced both a larger recruitment of sensorimotor regions and a greater disengagement of hippocampo-cortical networks during training. Brain-behavior regression analyses showed that while this stress-induced shift from (hippocampo-)fronto-parietal to motor networks was beneficial for initial performance, it was detrimental for consolidation. Our results provide the first experimental evidence that stress modulates the neural networks recruited during motor memory processing and therefore effectively unify concepts and mechanisms from diverse memory fields. Critically, our findings suggest that intersubject variability in brain responses to stress determines the impact of stress on motor learning and subsequent consolidation.


2003 ◽  
Vol 83 (11) ◽  
pp. 976-989 ◽  
Author(s):  
Lara A Boyd ◽  
Carolee J Winstein

Abstract Background and Purpose. Recovery of motor skills following stroke is supported, in part, by the implicit memory system. However, attempts to guide learning commonly use explicit instructions concerning “how to” perform a movement task. The purpose of this work was to systematically investigate the impact of explicit information (EI) on implicit motor-sequence learning using the ipsilesional arm in people with damage in the middle cerebral artery (MCA) distribution. Subjects and Methods. Ten people with unilateral stroke in the MCA distribution affecting the sensorimotor cortical areas and 10 people with no known pathology or impairment (control participants) were randomly divided into 2 groups. One group was provided with EI and one group was not (EI and No-EI groups, respectively) as the participants practiced an implicit motor-sequencing task over 3 days, with a retention test on day 4. Results. A 3-way interaction demonstrated that, across days of practice, EI had opposite effects on implicit motor-sequence performance for the 2 groups. Post hoc tests confirmed that EI facilitated the performance of the control participants in the EI group but interfered with the performance of the participants with stroke in the EI group. This interference effect persisted, and was evident during the retention test in the participants with stroke in the EI group. Discussion and Conclusion. Explicit information was detrimental for implicit motor-sequence learning following MCA stroke. Rehabilitation outcomes may benefit from consideration of stroke location when determining the degree to which EI can augment implicit motor skill learning.


2020 ◽  
Author(s):  
Elinor Tzvi ◽  
Richard Bey ◽  
Matthias Nitschke ◽  
Norbert Brüggemann ◽  
Joseph Classen ◽  
...  

AbstractPrevious studies have shown that persons with Parkinson’s disease (pwPD) share specific deficits in learning new sequential movements, but the neural substrates of this impairment remain unclear. In addition, the degree to which striatal dopaminergic denervation in PD affects the cortico-striato-cerebellar motor learning network remains unknown. We aimed to answer these questions using fMRI in 16 pwPD and 16 healthy age-matched control subjects while they performed an implicit motor sequence learning task. While learning was absent in both pwPD and controls assessed with reaction time differences between sequential and random trials, larger error-rates during the latter suggest that at least some of the complex sequence was encoded. Moreover, we found that while healthy controls could improve general task performance indexed by decreased reaction times across both sequence and random blocks, pwPD could not, suggesting disease-specific deficits in learning of stimulus-response associations. Using fMRI, we found that this effect in pwPD was correlated with decreased activity in the hippocampus over time. Importantly, activity in the substantia nigra (SN) and adjacent bilateral midbrain was specifically increased during sequence learning in pwPD compared to healthy controls, and significantly correlated with sequence-specific learning deficits. As increased SN activity was also associated (on trend) with higher doses of dopaminergic medication as well as disease duration, the results suggest that learning deficits in PD are associated with disease progression, indexing an increased drive to recruit dopaminergic neurons in the SN, however unsuccessfully. Finally, we found no differences between pwPD and controls in task modulation of the cortico-striato-cerebellar network. Notably, in both groups Bayesian model selection revealed cortico-cerebellar connections modulated by the task, suggesting that despite behavioral and activation differences, the same cortico-cerebellar circuitry is recruited for implementing the motor task.


2006 ◽  
Vol 95 (3) ◽  
pp. 1639-1644 ◽  
Author(s):  
Anna Floyer-Lea ◽  
Marzena Wylezinska ◽  
Tamas Kincses ◽  
Paul M. Matthews

Movement representations within the human primary motor and somatosensory cortices can be altered by motor learning. Decreases in local GABA concentration and its release may facilitate this plasticity. Here we use in vivo magnetic resonance spectroscopy (MRS) to noninvasively measure serial changes in GABA concentration in humans in a brain region including the primary sensorimotor cortex contralateral to the hand used for an isometric motor sequence learning task. Thirty minutes of motor sequence learning reduced the mean GABA concentration within a 2 × 2 × 2-cm3 voxel by almost 20%. This reduction was specific to motor learning: 30 min of similar, movements with an unlearnable, nonrepetitive sequence were not associated with changes in GABA concentration. No significant changes in GABA concentration were found in the primary sensorimotor cortex ipsilateral to the hand used for learning. These changes suggest remarkably rapid, regionally specific short-term presynaptic modulation of GABAergic input that should facilitate motor learning. Although apparently confined to the contralateral hemisphere, the magnitude of changes seen within a large spectroscopic voxel suggests that these changes occur over a wide local neocortical field.


2015 ◽  
Vol 9 ◽  
Author(s):  
Solopchuk Oleg ◽  
Alamia Andrea ◽  
OLIVIER Etienne ◽  
Orban De Xivry Jean-Jacques ◽  
Lefèvre Philippe ◽  
...  

2010 ◽  
Vol 103 (5) ◽  
pp. 2675-2683 ◽  
Author(s):  
Ovidiu Lungu ◽  
Alain Frigon ◽  
Mathieu Piché ◽  
Pierre Rainville ◽  
Serge Rossignol ◽  
...  

There is ample evidence that motor sequence learning is mediated by changes in brain activity. Yet the question of whether this form of learning elicits changes detectable at the spinal cord level has not been addressed. To date, studies in humans have revealed that spinal reflex activity may be altered during the acquisition of various motor skills, but a link between motor sequence learning and changes in spinal excitability has not been demonstrated. To address this issue, we studied the modulation of H-reflex amplitude evoked in the flexor carpi radialis muscle of 14 healthy individuals between blocks of movements that involved the implicit acquisition of a sequence versus other movements that did not require learning. Each participant performed the task in three conditions: “sequence”–externally triggered, repeating and sequential movements, “random”–similar movements, but performed in an arbitrary order, and “simple”– involving alternating movements in a left-right or up-down direction only. When controlling for background muscular activity, H-reflex amplitude was significantly more reduced in the sequence (43.8 ± 1.47%. mean ± SE) compared with the random (38.2 ± 1.60%) and simple (31.5 ± 1.82%) conditions, while the M-response was not different across conditions. Furthermore, H-reflex changes were observed from the beginning of the learning process up to when subjects reached asymptotic performance on the motor task. Changes also persisted for >60 s after motor activity ceased. Such findings suggest that the excitability in some spinal reflex circuits is altered during the implicit learning process of a new motor sequence.


2020 ◽  
Author(s):  
Dhanush Rachaveti ◽  
Rajiv Ranganathan ◽  
Varadhan SKM

AbstractThe occurrence of an error when performing a motor sequence causes an immediate reduction in speed on subsequent trials, which is referred to as post-error slowing. However, understanding how post-error slowing changes with practice has been difficult because it requires extended practice on a novel sequence task. To address this issue, we examined post-error slowing in a novel glove-based typing task that participants performed for 15 consecutive days. Speed and accuracy improved from the early to middle stages of practice, but did not show any further improvements between middle and late stage of practice. However, when we analyzed the response to errors, we found that participants decreased both the magnitude and duration of post-error slowing with practice, even after there were no detectable improvements in overall task performance. These results indicate that learning not only improves overall task performance but also modifies the ability to respond to errors.


Sign in / Sign up

Export Citation Format

Share Document