The Effect of Viewing a Self-Avatar on Distance Judgments in an HMD-Based Virtual Environment

2010 ◽  
Vol 19 (3) ◽  
pp. 230-242 ◽  
Author(s):  
Betty J Mohler ◽  
Sarah H Creem-Regehr ◽  
William B Thompson ◽  
Heinrich H Bülthoff

Few HMD-based virtual environment systems display a rendering of the user's own body. Subjectively, this often leads to a sense of disembodiment in the virtual world. We explore the effect of being able to see one's own body in such systems on an objective measure of the accuracy of one form of space perception. Using an action-based response measure, we found that participants who explored near space while seeing a fully-articulated and tracked visual representation of themselves subsequently made more accurate judgments of absolute egocentric distance to locations ranging from 4 m to 6 m away from where they were standing than did participants who saw no avatar. A nonanimated avatar also improved distance judgments, but by a lesser amount. Participants who viewed either animated or static avatars positioned 3 m in front of their own position made subsequent distance judgments with similar accuracy to the participants who viewed the equivalent animated or static avatar positioned at their own location. We discuss the implications of these results on theories of embodied perception in virtual environments.

Author(s):  
Michelangelo Tricarico

This chapter discusses the author's experience in virtual environments, with particular reference to virtual reconstruction. The events are narrated from the perspective of a student who at first developed his skills in this specific field at school, and then became competent and passionate enough to teach what he had learned in the course of time. He describes his experience from early school projects to the personal ones; from his award as a “Master Builder” to his early teaching lessons. Other learning activities that can be carried out in a virtual world are also illustrated, with particular reference to “coding”, which appears to be of great interest to the author. The main objective of this paper is to highlight the potential of a 3D virtual environment for the reconstruction of monuments, i.e., the author's area of expertise. It also provides a description of other activities that can be performed in a virtual environment, while illustrating the most common issues that can be experienced and suggesting how to solve them.


Author(s):  
Pedro Morillo ◽  
Juan Manuel Orduña ◽  
Marcos Fernandez

Networked virtual environments (NVEs) have become a major trend in distributed computing, mainly due to the enormous popularity of multi-player online games in the entertainment industry. Nowadays, NVE systems are considered as the supporting technology for many networked and virtual organizations (NVO) (Singhal & Zyda, 1999), especially to those classified within the field of computer supported cooperative work (CSCW), where networked computer can be seen as a standard to provide the technological means to support the team design (Ott & Nastansky, 1997). These highly interactive systems simulate a virtual world where multiple users share the same scenario. The system renders the images of the virtual world that each user would see if he was located at that point in the virtual environment. Each user is represented in the shared virtual environment by an entity called avatar, whose state is controlled by the user through the client computer. Hundreds and even thousands of client computers can be simultaneously connected to the NVE system through different networks, and even through the Internet. NVE systems are currently used in many different applications (Singhal & Zyda, 1999) such as civil and military distributed training (Miller & Thorpe, 1995), collaborative design (Salles, Galli, Almeida et al., 1997) and e-learning (Bouras, Fotakis, & Philopoulos, 1998). Nevertheless, the most extended example of NVE systems are commercial multi-player online game (MOG) environments. These systems use the same simulation techniques that NVE systems do, and they are predicted to make up over 25 percent of local area network (LAN) traffic by 2010 (McCreary & Claffy, 2000).


1996 ◽  
Vol 5 (3) ◽  
pp. 274-289 ◽  
Author(s):  
Claudia Hendrix ◽  
Woodrow Barfield

This paper reports the results of three studies, each of which investigated the sense of presence within virtual environments as a function of visual display parameters. These factors included the presence or absence of head tracking, the presence or absence of stereoscopic cues, and the geometric field of view used to create the visual image projected on the visual display. In each study, subjects navigated a virtual environment and completed a questionnaire designed to ascertain the level of presence experienced by the participant within the virtual world. Specifically, two aspects of presence were evaluated: (1) the sense of “being there” and (2) the fidelity of the interaction between the virtual environment participant and the virtual world. Not surprisingly, the results of the first and second study indicated that the reported level of presence was significantly higher when head tracking and stereoscopic cues were provided. The results from the third study showed that the geometric field of view used to design the visual display highly influenced the reported level of presence, with more presence associated with a 50 and 90° geometric field of view when compared to a narrower 10° geometric field of view. The results also indicated a significant positive correlation between the reported level of presence and the fidelity of the interaction between the virtual environment participant and the virtual world. Finally, it was shown that the survey questions evaluating several aspects of presence produced reliable responses across questions and studies, indicating that the questionnaire is a useful tool when evaluating presence in virtual environments.


1996 ◽  
Vol 5 (3) ◽  
pp. 290-301 ◽  
Author(s):  
Claudia Hendrix ◽  
Woodrow Barfield

Two studies were performed to investigate the sense of presence within stereoscopic virtual environments as a function of the addition or absence of auditory cues. The first study examined the presence or absence of spatialized sound, while the second study compared the use of nonspatialized sound to spatialized sound. Sixteen subjects were allowed to navigate freely throughout several virtual environments and for each virtual environment, their level of presence, the virtual world realism, and interactivity between the participant and virtual environment were evaluated using survey questions. The results indicated that the addition of spatialized sound significantly increased the sense of presence but not the realism of the virtual environment. Despite this outcome, the addition of a spatialized sound source significantly increased the realism with which the subjects interacted with the sound source, and significantly increased the sense that sounds emanated from specific locations within the virtual environment. The results suggest that, in the context of a navigation task, while presence in virtual environments can be improved by the addition of auditory cues, the perceived realism of a virtual environment may be influenced more by changes in the visual rather than auditory display media. Implications of these results for presence within auditory virtual environments are discussed.


1997 ◽  
Vol 6 (1) ◽  
pp. 57-72 ◽  
Author(s):  
Jeffrey Tsao ◽  
Charles J. Lumsden

Current virtual environment systems are, for the most part, dedicated to specific applications such as engineering or surgery. The CRYSTAL project applied the concept of crystals, or 3D “windows,” to segment the virtual world into independent volumes, which may interact with each other. The contents of individual crystals can be very different from crystal to crystal, so the resulting virtual environment (VE) is not restricted to any unique context, and it is suitable as a general-purpose workspace. Crystals are created and owned by independent programs called modules, which serve as functional elements of the VE. There are basic modules to provide common functions, such as navigation, wand control, and so on. Extra modules can be launched to add content and functionality to the VE, and the modules can also be terminated interactively. Unlike “pipelined” systems for VE design, CRYSTAL modules are designed to self-assemble and resolve any interface conflicts automatically. As a result, they do not place a high demand on user proficiency in customizing VEs for a variety of uses.


Author(s):  
Jacquelyne Forgette ◽  
Michael Katchabaw

A key challenge in programming virtual environments is to produce virtual characters that are autonomous and capable of action selections that appear believable. In this chapter, motivations are used as a basis for learning using reinforcements. With motives driving the decisions of characters, their actions will appear less structured and repetitious, and more human in nature. This will also allow developers to easily create virtual characters with specific motivations, based mostly on their narrative purposes or roles in the virtual world. With minimum and maximum desirable motive values, the characters use reinforcement learning to drive action selection to maximize their rewards across all motives. Experimental results show that a character can learn to satisfy as many as four motives, even with significantly delayed rewards, and motive changes that are caused by other characters in the world. While the actions tested are simple in nature, they show the potential of a more complicated motivation driven reinforcement learning system. The developer need only define a character's motivations, and the character will learn to act realistically over time in the virtual environment.


2008 ◽  
Vol 17 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Peter Willemsen ◽  
Amy A. Gooch ◽  
William B. Thompson ◽  
Sarah H. Creem-Regehr

Several studies from different research groups investigating perception of absolute, egocentric distances in virtual environments have reported a compression of the intended size of the virtual space. One potential explanation for the compression is that inaccuracies and cue conflicts involving stereo viewing conditions in head mounted displays result in an inaccurate absolute scaling of the virtual world. We manipulate stereo viewing conditions in a head mounted display and show the effects of using both measured and fixed inter-pupilary distances, as well as bi-ocular and monocular viewing of graphics, on absolute distance judgments. Our results indicate that the amount of compression of distance judgments is unaffected by these manipulations. The equivalent performance with stereo, bi-ocular, and monocular viewing suggests that the limitations on the presentation of stereo imagery that are inherent in head mounted displays are likely not the source of distance compression reported in previous virtual environment studies.


2000 ◽  
Vol 9 (5) ◽  
pp. 435-447 ◽  
Author(s):  
Craig D. Murray ◽  
John M. Bowers ◽  
Adrian J. West ◽  
Steve Pettifer ◽  
Simon Gibson

We report a qualitative study of navigation, wayfinding, and place experience within a virtual city. “Cityscape” is a virtual environment (VE), partially algorithmically generated and intended to be redolent of the aggregate forms of real cities. In the present study, we observed and interviewed participants during and following exploration of a desktop implementation of Cityscape. A number of emergent themes were identified and are presented and discussed. Observing the interaction with the virtual city suggested a continuous relationship between real and virtual worlds. Participants were seen to attribute real-world properties and expectations to the contents of the virtual world. The implications of these themes for the construction of virtual environments modeled on real-world forms are considered.


Author(s):  
Erika deJong ◽  
Dave Chodos ◽  
Pawel Kuras ◽  
Patricia Boechler ◽  
Eleni Stroulia ◽  
...  

Virtual interactive environments such as Second Life are emerging as innovative tools that can support and enhance learning in various educational domains. However, for the educational practitioner new to these environments, developing educational settings and activities in a virtual environment can appear to be technically complex and beyond their area of expertise. This case study describes some of the technical challenges encountered and the solutions derived during the development of a virtual world for the delivery of a health science interprofessional communications course.


2011 ◽  
pp. 296-305
Author(s):  
Pedro Morillo ◽  
Juan Manuel Orduña ◽  
Marcos Fernandez

Networked virtual environments (NVEs) have become a major trend in distributed computing, mainly due to the enormous popularity of multi-player online games in the entertainment industry. Nowadays, NVE systems are considered as the supporting technology for many networked and virtual organizations (NVO) (Singhal & Zyda, 1999), especially to those classified within the field of computer supported cooperative work (CSCW), where networked computer can be seen as a standard to provide the technological means to support the team design (Ott & Nastansky, 1997). These highly interactive systems simulate a virtual world where multiple users share the same scenario. The system renders the images of the virtual world that each user would see if he was located at that point in the virtual environment. Each user is represented in the shared virtual environment by an entity called avatar, whose state is controlled by the user through the client computer. Hundreds and even thousands of client computers can be simultaneously connected to the NVE system through different networks, and even through the Internet. NVE systems are currently used in many different applications (Singhal & Zyda, 1999) such as civil and military distributed training (Miller & Thorpe, 1995), collaborative design (Salles, Galli, Almeida et al., 1997) and e-learning (Bouras, Fotakis, & Philopoulos, 1998). Nevertheless, the most extended example of NVE systems are commercial multi-player online game (MOG) environments. These systems use the same simulation techniques that NVE systems do, and they are predicted to make up over 25 percent of local area network (LAN) traffic by 2010 (McCreary & Claffy, 2000).


Sign in / Sign up

Export Citation Format

Share Document