scholarly journals Submission signals in animal groups

Behaviour ◽  
2021 ◽  
pp. 1-20
Author(s):  
Adam R. Reddon ◽  
Tommaso Ruberto ◽  
Simon M. Reader

Abstract Aggression is costly, and animals have evolved tactics to mitigate these costs. Submission signals are an underappreciated example of such adaptations. Here we review submissive behaviour, with an emphasis on non-primates. We highlight the design of submission signals and how such signals can reduce costs. Animal societies necessitate frequent social interactions, which can increase the probability of conflict. Where maintaining group proximity is essential, animals cannot avoid aggression by fleeing. Mutual interest between group members may also select for efficient conflict avoidance and resolution mechanisms. As a result, submission signals may be especially well developed among group living species, helping social animals to overcome potential costs of recurring conflict that could otherwise counter the benefits of group living. Therefore, submission signalling can be a crucial aspect of social living and is deserving of specific attention within the broader context of social evolution and communication.

Author(s):  
Jeffrey P. Copeland ◽  
Arild Landa ◽  
Kimberly Heinemeyer ◽  
Keith B. Aubry ◽  
Jiska van Dijk ◽  
...  

Social behaviour in solitary carnivores has long been an active area of investigation but for many species remains largely founded in conjecture compared to our understanding of sociality in group-living species. The social organization of the wolverine has, until now, received little attention beyond its portrayal as a typical mustelid social system. In this chapter the authors compile observations of social interactions from multiple wolverine field studies, which are integrated into an ecological framework. An ethological model for the wolverine is proposed that reveals an intricate social organization, which is driven by variable resource availability within extremely large territories and supports social behaviour that underpins offspring development.


2009 ◽  
Vol 87 (7) ◽  
pp. 604-608 ◽  
Author(s):  
G. G. Carter ◽  
M. B. Fenton ◽  
P. A. Faure

Temporally precise vocal exchanges, termed “antiphonal calling”, might allow pair or group members to maintain social contact with greater efficiency than when calling independently. The white-winged vampire bat ( Diaemus youngi (Jentink, 1893)) is a group-living species that produces social calls in antiphonal exchanges. Because white-winged vampire bats can use social calls to discriminate conspecifics, we suspect that one function of these vocal exchanges is to allow group members to know who is where. Here, we tested the prediction that antiphonal calling by groups of white-winged vampire bats increases when the spatial positions of conspecifics change. We recorded social calls from groups of four individually caged bats in total darkness, with each bat located in the corner of a 4 m × 4 m room. During test trials, we shifted the spatial positions of caged bats to new positions. During control trials, caged bats were displaced an equal distance but were returned to their original positions. We found that both the number of social calls and the proportion of antiphonal exchanges were greater during test trials than during control trials. These results suggest that white-winged vampire bats use antiphonal exchanges of social calls to monitor the spatial positions of conspecifics.


2009 ◽  
Vol 57 (6) ◽  
pp. 385 ◽  
Author(s):  
Zacariah D. Billingham ◽  
David G. Chapple ◽  
Paul Sunnucks ◽  
Bob B. M. Wong

An ability to recognise and discriminate between group and non-group members is essential for most group-living species. Several different sensory modalities may be utilised for social recognition, the most notable of which is olfaction. Among insects, members of the order Blattodea (cockroaches, termites) exhibit a diverse range of social systems and provide an excellent model for examining the role of chemical communication in group discrimination. We experimentally tested the importance of chemical cues in the association preferences of the subsocial Australian wood-boring cockroach, Panesthia australis. Using a series of dichotomous choice trials, we found that individuals preferred conspecific odour cues over those of an unscented peatmoss control. We then gave cockroaches a choice between the odour cues of cockroaches from different logs, and found that they did not exhibit a preference for the cues of individuals from their own log versus those from different logs within the same locality. However, cockroaches exhibited a strong preference for cues taken from individuals from a geographically distant population. Our findings suggest that P. australis engages in group discrimination, and that patterns of association may reflect an underlying preference for unfamiliar and/or genetically dissimilar individuals in a species encumbered by restricted gene flow.


2018 ◽  
Vol 285 (1891) ◽  
pp. 20181577 ◽  
Author(s):  
A. A. Maldonado-Chaparro ◽  
G. Alarcón-Nieto ◽  
J. A. Klarevas-Irby ◽  
D. R. Farine

In group-living species, social stability is an important trait associated with the evolution of complex behaviours such as cooperation. While the drivers of stability in small groups are relatively well studied, little is known about the potential impacts of unstable states on animal societies. Temporary changes in group composition, such as a social group splitting and recombining (i.e. a disturbance event), can result in individuals having to re-establish their social relationships, thus taking time away from other tasks such as foraging or vigilance. Here, we experimentally split socially stable groups of captive zebra finches ( Taeniopygia guttata ), and quantified the effects of repeated disturbance events on (1) group foraging efficiency, and (2) co-feeding associations when subgroups were recombined. We found that the efficiency of groups to deplete a rich, but ephemeral, resource patch decreased after just a single short disturbance event. Automated tracking of individuals showed that repeated disturbances reduced efficiency by causing social relationships to become more differentiated and weaker, resulting in fewer individuals simultaneously accessing the patch. Our experiment highlights how short-term disturbances can severely disrupt social structure and group functionality, revealing potential costs associated with group instability that can have consequences for the evolution of animal societies.


2019 ◽  
Vol 15 (12) ◽  
pp. 20190529
Author(s):  
E. Inzani ◽  
H. H. Marshall ◽  
F. J. Thompson ◽  
G. Kalema-Zikusoka ◽  
M. A. Cant ◽  
...  

When breeding females compete for limited resources, the intensity of this reproductive conflict can determine whether the fitness benefits of current reproductive effort exceed the potential costs to survival and future fertility. In group-living species, reproductive competition can occur through post-natal competition among the offspring of co-breeding females. Spontaneous abortion could be a response to such competition, allowing females to curtail reproductive expenditure on offspring that are unlikely to survive and to conserve resources for future breeding opportunities. We tested this hypothesis using long-term data on banded mongooses, Mungos mungo , in which multiple females within a group give birth synchronously to a communal litter that is cared for by other group members. As predicted, abortions were more likely during dry periods when food is scarce, and in breeding attempts with more intense reproductive competition. Within breeding events, younger, lighter females carrying smaller fetuses were more likely to abort, particularly those that were also of lower rank. Our results suggest that abortion may be a means by which disadvantaged females conserve resources for future breeding attempts in more benign conditions, and highlight that female reproductive competition may be resolved long before the production of offspring.


2020 ◽  
Author(s):  
Roi Harel ◽  
J. Carter Loftus ◽  
Margaret C. Crofoot

AbstractWhen members of a group differ in locomotor capacity, coordinating collective movement poses a challenge: some individuals may have to move faster (or slower) than their preferred speed to remain together. Such compromises have energetic repercussions yet research in collective behavior has largely neglected locomotor consensus costs. Here we integrate high-resolution tracking of wild baboon locomotion and movement with simulations to demonstrate that size-based variation in locomotor capacity poses an obstacle to collective movement. While all baboons modulate their gait and move-pause dynamics during collective movement, the costs of maintaining cohesion are disproportionately borne by smaller group members. Although consensus costs are not distributed equally, all group-mates do make locomotor compromises, suggesting a shared decision-making process drives the pace of collective movement in this highly despotic species. These results highlight the importance of considering how social dynamics and locomotor capacity interact to shape the movement ecology of group-living species.


2021 ◽  
Vol 288 (1955) ◽  
pp. 20210839
Author(s):  
Roi Harel ◽  
J. Carter Loftus ◽  
Margaret C. Crofoot

When members of a group differ in locomotor capacity, coordinating collective movement poses a challenge: some individuals may have to move faster (or slower) than their preferred speed to remain together. Such compromises have energetic repercussions, yet research in collective behaviour has largely neglected locomotor consensus costs. Here, we integrate high-resolution tracking of wild baboon locomotion and movement with simulations to demonstrate that size-based variation in locomotor capacity poses an obstacle to the collective movement. While all baboons modulate their gait and move-pause dynamics during collective movement, the costs of maintaining cohesion are disproportionately borne by smaller group members. Although consensus costs are not distributed equally, all group-mates do make locomotor compromises, suggesting a shared decision-making process drives the pace of collective movement in this highly despotic species. These results highlight the importance of considering how social dynamics and locomotor capacity interact to shape the movement ecology of group-living species.


2016 ◽  
Vol 283 (1843) ◽  
pp. 20161567 ◽  
Author(s):  
Andrew N. Radford ◽  
Bonaventura Majolo ◽  
Filippo Aureli

Conflict is rife in group-living species and exerts a powerful selective force. Group members face a variety of threats from extra-group conspecifics, from individuals looking for reproductive opportunities to rival groups seeking resources. Theory predicts that such between-group conflict should influence within-group behaviour. However, compared with the extensive literature on the consequences of within-group conflict, relatively little research has considered the behavioural impacts of between-group conflict. We give an overview of why between-group conflict is expected to influence subsequent behaviour among group members. We then use what is known about the consequences of within-group conflict to generate testable predictions about how between-group conflict might affect within-group behaviour in the aftermath. We consider the types of behaviour that could change and how the role of different group members in the conflict can exert an influence. Furthermore, we discuss how conflict characteristics and outcome, group size, social structure and within-group relationship quality might modulate post-conflict behavioural changes. Finally, we propose the need for consistent definitions, a broader range of examined behaviours and taxa, individual-focused data collection, complementary observational and experimental approaches, and a consideration of lasting effects if we are to understand fully the significant influence of between-group conflict on social behaviour.


2019 ◽  
Vol 5 (12) ◽  
pp. eaay1276 ◽  
Author(s):  
Peter M. Kappeler ◽  
Luca Pozzi

Nonhuman primate societies vary tremendously in size and composition, but how and why evolutionary transitions among different states occurred remains highly controversial. In particular, how many times pair living evolved and the social states of the ancestors of pair- and group-living species remains contentious. We examined evolutionary transitions in primate social evolution by using new, independent categorizations of sociality and different phylogenetic hypotheses with a vastly expanded dataset. Using Bayesian phylogenetic comparative methods, we consistently found the strongest support for a model that invokes frequent transitions between solitary ancestors and pair-living descendants, with the latter giving rise to group-living species. This result was robust to systematic variation in social classification, sample size, and phylogeny. Our analyses therefore indicate that pair living was a stepping stone in the evolution of structurally more complex primate societies, a result that bolsters the role of kin selection in social evolution.


2010 ◽  
Vol 7 (2) ◽  
pp. 190-193 ◽  
Author(s):  
Marian Wong ◽  
Sigal Balshine

Social aggression is one of the most conspicuous features of animal societies, yet little is known about the causes of individual variation in aggression within social hierarchies. Recent theory suggests that when individuals form queues for breeding, variation in social aggression by non-breeding group members is related to their probability of inheriting breeding status. However, levels of aggression could also vary as a temporary response to changes in the hierarchy, with individuals becoming more aggressive as they ascend in rank, in order to re-establish dominance relationships. Using the group-living fish, Neolamprologus pulcher , we show that subordinates became more aggressive after they ascended in rank. Female ascenders exhibited more rapid increases in aggression than males, and the increased aggression was primarily directed towards group members of adjacent rather than non-adjacent rank, suggesting that social aggression was related to conflict over rank. Elevated aggression by ascenders was not sustained over time, there was no relationship between rank and aggression in stable groups, and aggression given by ascenders was not sex-biased. Together, these results suggest that the need to re-establish dominance relationships following rank ascension is an important determinant of variation in aggression in animal societies.


Sign in / Sign up

Export Citation Format

Share Document