Reaction kinetics of y -ureidopropyltrimethoxysilane in the water-methanol system studied by FTIR spectroscopy

1998 ◽  
Vol 12 (12) ◽  
pp. 1361-1376 ◽  
Author(s):  
Jagath K. Premachandra ◽  
Wim J. Van Ooij ◽  
James E. Mark
2020 ◽  
Vol 122 (6) ◽  
pp. 1900302
Author(s):  
Mengzhu Wang ◽  
Jia Chen ◽  
Bingyu Jing ◽  
Lingyan Zhang ◽  
Yaoyao Dong ◽  
...  

2020 ◽  
Author(s):  
Camilo A. Mesa ◽  
Ludmilla Steier ◽  
Benjamin Moss ◽  
Laia Francàs ◽  
James E. Thorne ◽  
...  

<p><i>Operando</i> spectroelectrochemical analysis is used to determine the water oxidation reaction kinetics for hematite photoanodes prepared using four different synthetic procedures. Whilst these photoanodes exhibit very different current / voltage performance, their underlying water oxidation kinetics are found to be almost invariant. Lower photoanode performance was found to correlate with the observation of optical signals indicative of charge accumulation in mid-gap oxygen vacancy states, indicating these states do not contribute directly to water oxidation.</p>


2003 ◽  
Author(s):  
David J. McGarvey ◽  
H. D. Durst ◽  
William R. Creasy ◽  
Jill L. Ruth ◽  
Kevin M. Morrissey

1980 ◽  
Vol 45 (12) ◽  
pp. 3402-3407 ◽  
Author(s):  
Jaroslav Bartoň ◽  
Vladimír Pour

The course of the conversion of methanol with water vapour was followed on a low-temperature Cu-Zn-Cr-Al catalyst at pressures of 0.2 and 0.6 MPa. The kinetic data were evaluated together with those obtained at 0.1 MPa and the following equation for the reaction kinetics at the given conditions was derived: r = [p(CH3OH)p(H2O)]0.5[p(H2)]-1.3.


2006 ◽  
Vol 71 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Yuanhua Sun ◽  
Tonglai Zhang ◽  
Jianguo Zhang ◽  
Xiaojing Qiao ◽  
Li Yang ◽  
...  

A "snapshot" simulation of the surface reaction zone is captured by a thin film of material heated rapidly to temperatures characteristic of the burning surface by using the T-jump/FTIR spectroscopy. The time-to-exotherm (tx) kinetics method derived from the control voltage trace of the Pt filament can be introduced to resolve the kinetics of an energetic material owing to its high sensitivity to the thermochemical reactions. The kinetic parameters of the two title compounds are determined under different pressures. The results show that Li(NTO)·2H2O and Na(NTO)·H2O (NTO = anion of 3-nitro-1,2,4-triazol-5-one) exhibit weak pressure dependence, their decomposition is dominated by the condensed phase chemistry irrespective of the pressure in the 0.1-1.1 MPa range. The values of Ea determined here are smaller than those given by a traditional non-isothermal differential scanning colorimetry (DSC) method, which might be resembled as the surface of explosion more closely and enabled the pyrolysis surface to be incorporated into models of steady and possibly unsteady combustion. The kinetics can also be successfully used to understand the behavior of the energetic material in practical combustion problems.


Sign in / Sign up

Export Citation Format

Share Document