In vitro and in vivo degradation behavior of acetylated chitosan porous beads

2008 ◽  
Vol 19 (4) ◽  
pp. 453-466 ◽  
Author(s):  
Sung Mook Lim ◽  
Dae Kun Song ◽  
Se Heang Oh ◽  
Dong Sin Lee-Yoon ◽  
Eun Hee Bae ◽  
...  
2009 ◽  
Vol 1190 ◽  
Author(s):  
Bernhard Hiebl ◽  
Karl Kratz ◽  
Rosemarie Fuhrmann ◽  
Friedrich Jung ◽  
Andres Lendlein ◽  
...  

AbstractThe degradation behavior of biodegradable multiblock copolymers (PDC) containing poly(p-dioxanone) hard segments (PPDO) and crystallizable poly(epsilon-caprolactone) switching segments (PCL) synthesized via co-condensation of two oligomeric macrodiols with an aliphatic diisocyanate as junction unit was explored in in vivo and in vitro experiments. The in vitro experiments for enzymatic degradation resulted that the poly(epsilon-caprolactone) segments are degraded faster, than the poly(p-dioxanone) segments. During degradation the outer layer of the test specimen becomes porous. Finally non-soluble degradation products in form of particles were found at the surface. This observation is in good agreement with the in vivo studies, where the non-soluble degradation products in the periimplantary tissues showed a diameter of 1 – 3 micron.


2020 ◽  
Vol 5 (2) ◽  
pp. 275-285 ◽  
Author(s):  
Kai Chen ◽  
Xinhui Xie ◽  
Hongyan Tang ◽  
Hui Sun ◽  
Ling Qin ◽  
...  

2016 ◽  
Vol 42 (11) ◽  
pp. 1732-1741 ◽  
Author(s):  
Zhen Li ◽  
Jinxu Cao ◽  
Beibei Hu ◽  
Heran Li ◽  
Hongzhuo Liu ◽  
...  

2020 ◽  
Vol 574 ◽  
pp. 118870 ◽  
Author(s):  
Moran Haim Zada ◽  
Awanish Kumar ◽  
Omar Elmalak ◽  
Elana Markovitz ◽  
Ruthy Icekson ◽  
...  

2004 ◽  
Vol 5 (4) ◽  
pp. 1303-1309 ◽  
Author(s):  
Sung In Jeong ◽  
Byung-Soo Kim ◽  
Young Moo Lee ◽  
Kyo Jin Ihn ◽  
Soo Hyun Kim ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7776
Author(s):  
Antje Schauer ◽  
Christian Redlich ◽  
Jakob Scheibler ◽  
Georg Poehle ◽  
Peggy Barthel ◽  
...  

The biocompatibility and degradation behavior of pure molybdenum (Mo) as a bioresorbable metallic material (BMM) for implant applications were investigated. In vitro degradation of a commercially available Mo wire (ø250 µm) was examined after immersion in modified Kokubo’s SBF for 28 days at 37 °C and pH 7.4. For assessment of in vivo degradation, the Mo wire was implanted into the abdominal aorta of female Wistar rats for 3, 6 and 12 months. Microstructure and corrosion behavior were analyzed by means of SEM/EDX analysis. After explantation, Mo levels in serum, urine, aortic vessel wall and organs were investigated via ICP-OES analysis. Furthermore, histological analyses of the liver, kidneys, spleen, brain and lungs were performed, as well as blood count and differentiation by FACS analysis. Levels of the C-reactive protein were measured in blood plasma of all the animals. In vitro and in vivo degradation behavior was very similar, with formation of uniform, non-passivating and dissolving product layers without occurrence of a localized corrosion attack. The in vitro degradation rate was 101.6 µg/(cm2·d) which corresponds to 33.6 µm/y after 28 days. The in vivo degradation rates of 12, 33 and 36 µg/(cm2·d) were observed after 3, 6 and 12 months for the samples properly implanted in the aortic vessel wall. This corresponds with a degradation rate of 13.5 µm/y for the 12-month cohort. However, the magnitude of degradation strongly depended on the implant site, with the wires incorporated into the vessel wall showing the most severe degradation. Degradation of the implanted Mo wire neither induced an increase in serum or urine Mo levels nor were elevated Mo levels found in the liver and kidneys compared with the respective controls. Only in the direct vicinity of the implant in the aortic vessel wall, a significant amount of Mo was found, which, however, was far below the amounts to be expected from degrading wires. No abnormalities were detected for all timepoints in histological and blood analyses compared to the control group. The C-reactive protein levels were similar between all the groups, indicating no inflammation processes. These findings suggest that dissolved Mo from a degrading implant is physiologically transported and excreted. Furthermore, radiographic and µCT analyses revealed excellent radiopacity of Mo in tissues. These findings and the unique combination with its extraordinary mechanical properties make Mo an interesting alternative for established BMMs.


Polymer ◽  
2014 ◽  
Vol 55 (20) ◽  
pp. 5111-5124 ◽  
Author(s):  
Liqun Yang ◽  
Jianxin Li ◽  
Shu Meng ◽  
Ying Jin ◽  
Jinzhe Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document