scholarly journals Molecular phylogeny and shell microstructure of Fungiacava eilatensis Goreau et al. 1968, boring into mushroom corals (Scleractinia: Fungiidae), in relation to other mussels (Bivalvia: Mytilidae)

2011 ◽  
Vol 80 (3) ◽  
pp. 169-178 ◽  
Author(s):  
Masato Owada ◽  
Bert W. Hoeksema

Research on the evolution of the symbiosis between the boring mussel Fungiacava eilatensis (Bivalvia: Mytilidae) and its mushroom coral hosts (Scleractinia: Fungiidae), which requires phylogenetic reconstructions of both the Mytilidae and the Fungiidae, contributes to the understanding of the complexity of coral reef ecosystems. Previously, Fungiacava was regarded as a genus that had descended from Leiosolenus or as belonging to the subfamily Crenellinae, but no phylogenetic support has been obtained for this hypothesis. In the present study, the 18s rRNA sequences of ten mytilid species and the shell microstructures of 12 mytilids were investigated. The phylogenetic position of F. eilatensis is discussed in relation to its associations with its host species. The results of the molecular phylogenetic analysis indicate that F. eilatensis forms a sister group with Leiosolenus simplex, a livecoral- boring species within the Leiosolenus clade. Scanning electron microscope observations indicate that the shell of F. eilatensis is constructed of 3 layers: the outer shell layer with a homogeneous structure, the middle shell layer as a sheet nacreous structure, and the inner shell layer with an irregular simple prism structure. This shell microstructure of F. eilatensis is similar to that of Leiosolenus malaccanus and L. simplex. These findings show that F. eilatensis has descended from a coral-boring Leiosolenus species and that it would be adequate for Fungiacava to be treated as Leiosolenus. However, because of its extraordinary shell shape it has been kept as a separate genus.

Zootaxa ◽  
2018 ◽  
Vol 4415 (3) ◽  
pp. 452 ◽  
Author(s):  
P. R. PUGH ◽  
C.W. DUNN ◽  
S.H.D. HADDOCK

A new species of calycophoran siphonophore, Tottonophyes enigmatica gen. nov, sp. nov., is described. It has a unique combination of traits, some shared with prayomorphs (including two rounded nectophores) and some with clausophyid diphyomorphs (the nectophores are dissimilar, with one slightly larger and slightly to the anterior of the other, and both possess a somatocyst). Molecular phylogenetic analyses indicate that the new species is the sister group to all other diphyomorphs. A new family, Tottonophyidae, is established for it. Its phylogenetic position and distinct morphology help clarify diphyomorph evolution. The function and homology of the nectophoral canals and somatocyst is also re-examined and further clarification is given to their nomenclature.


2014 ◽  
Vol 28 (3) ◽  
pp. 309 ◽  
Author(s):  
Christopher E. Laumer ◽  
Gonzalo Giribet ◽  
Marco Curini-Galletti

A new lithophoran proseriate flatworm, Prosogynopora riseri, gen. et sp. nov. (Platyhelminthes: Rhabditophora: Proseriata), is described from the New England coast (USA). The species shares characters with members of the families Calviriidae and Coelogynoporidae, e.g. the presence of paracnida, the short common female duct, a septum and diaphragm at the base of the pharynx. However, the inverted topology of the genital system, presenting an anterior female pore shortly behind the mouth and a male pore opening nearly on the caudal terminus, is unique within the Proseriata, and permits inclusion into neither family on morphological grounds. We investigated the phylogenetic position of the new species within the available diversity of proseriate 18S and 28S rRNA sequences. However, an exploration of diverse homology schemes, alignment conditions and optimality criteria proved the position of P. riseri, gen. et sp. nov. to be remarkably unstable, particularly with respect to the method of alignment, variously suggesting sister-group relationships with (or within) Coelogynoporidae, with Calviriidae, or with a clade composed of all other Lithophora. Despite its unique morphology and the absence of molecular phylogenetic evidence for its inclusion within any family as currently defined, we refrain from assigning a higher taxonomic rank to the new lineage, pending critical re-assessment of homology in several character systems and the availability of further taxon- and gene-rich enquiries into the phylogeny of Proseriata. Apingospermata, new taxon and Dolichogynoducta, new taxon are proposed as two rankless taxonomic names of Lithophora, corresponding to well-supported clades in our molecular phylogenetic hypothesis.


Zootaxa ◽  
2018 ◽  
Vol 4399 (2) ◽  
pp. 248 ◽  
Author(s):  
PEKKA VILKAMAA ◽  
HANS-GEORG RUDZINSKI ◽  
NIKOLA BURDÍKOVÁ ◽  
JAN ŠEVČÍK

Four Oriental species of Aerumnosa Mohrig, 1999 (Diptera: Sciaridae), a genus previously known only from Papua New Guinea, are newly described and illustrated: Aerumnosa bituberculata sp. n. (India), A. gemmifera sp. n. (Malaysia: Sabah), A. horrifica sp. n. (Brunei, Thailand) and A. impar sp. n. (Malaysia: Sabah). On the basis of the new material, the genus is redefined. A key to the known species of Aerumnosa is presented, including four new species. An updated molecular phylogenetic analysis based on four gene markers (18S, 28S, 16S and COI) shows Aerumnosa to be a member of the subfamily Cratyninae. The monophyly of Cratyninae is well supported, which clade also includes the genera Hyperlasion Schmitz, 1919, Pnyxiopalpus Vilkamaa & Hippa, 1999 and Pseudoaerumnosa Rudzinski, 2006. According to the present phylogenetic hypothesis, the monophyly of Cratyna Winnertz, 1967 s. l. needs to be revisited. The clade including Cratyna (s. str.) ambigua (Lengersdorf, 1934) appears as the sister group of Aerumnosa. 


2017 ◽  
Author(s):  
Felix Bemm ◽  
Laura Burleigh ◽  
Frank Förster ◽  
Roland Schmucki ◽  
Martin Ebeling ◽  
...  

AbstractTardigrades are among the most stress tolerant animals and survived even unassisted exposure to space in low earth orbit. Still, the adaptations leading to these unusual physiological features remain unclear. Even the phylogenetic position of this phylum within the Ecdysozoa is unclear. Complete genome sequences might help to address these questions as genomic adaptations can be revealed and phylogenetic reconstructions can be based on new markers. Here, we present a first draft genome of a species from the family Milnesiidae, namely Milnesium tardigradum. We consistently place M. tardigradum and the two previously sequenced Hypsibiidae species, Hypsibius dujardini and Ramazzottius varieornatus, as sister group of the nematodes with the arthropods as outgroup. Based on this placement, we identify a massive gene loss thus far attributed to the nematodes which predates their split from the tardigrades. We provide a comprehensive catalog of protein domain expansions linked to stress response and show that previously identified tardigrade-unique proteins are erratically distributed across the genome of M. tardigradum. We further suggest alternative pathways to cope with high stress levels that are yet unexplored in tardigrades and further promote the phylum Tardigrada as a rich source of stress protection genes and mechanisms.


2018 ◽  
Vol 32 (5) ◽  
pp. 1111 ◽  
Author(s):  
Li-Wei Wu ◽  
Thomas Bourguignon ◽  
Jan Šobotník ◽  
Ping Wen ◽  
Wei-Ren Liang ◽  
...  

Termites are eusocial insects currently classified into nine families, of which only Stylotermitidae has never been subjected to any molecular phylogenetic analysis. Stylotermitids present remarkable morphology and have the unique habit of feeding on living trees. We sequenced mitogenomes of five stylotermitid samples from China and Taiwan to reconstruct the phylogenetic position of Stylotermitidae. Our analyses placed Stylotermitidae as the sister group of all remaining Neoisoptera. The systematic position of Stylotermitidae calls for additional studies of their biology, including their developmental pathways and pheromone communication, which have the potential to change our understanding of termite evolution.


2021 ◽  
Author(s):  
Daria M. Kupaeva ◽  
Tatiana S. Lebedeva ◽  
Tatiana P. Ashurkova ◽  
Andrey A. Prudkovsky ◽  
Daniel Vanwalleghem ◽  
...  

The life-cycle and polyp morphology of Margelopsidae representatives are very different from all other Aplanulata cnidarians. Until recently, their evolutionary origin and phylogenetic position has been a subject of significant speculation. A recent molecular study based only on COI data unexpectedly placed Margelopsidae as a sister group to all Aplanulata, despite the Margelopsid morphology suggests affiliation with Tubulariidae or Corymorphidae. Here we used multigene analyses, including nuclear (18S rRNA and 28S rRNA) and mitochondrial (16S rRNA and COI) markers of the Margelopsidae hydroid Margelopsis haeckelii Hartlaub, 1897, to resolve its phylogenetic position with respect to other hydrozoans. Our data provides strong evidence that M. haeckelii is a member of the family Corymorphydae, making the family Margelopsidae invalid. Furthermore, we show that medusa previously known as M. harlaubii Browne, 1903 is sister to Plotocnide borealis, Wagner, 1885 and might be a member of Boreohydridae. The phylogenetic signal of polyp and medusа stages is discussed in light of concept of inconsistent evolution and molecular phylogenetic analysis.


2003 ◽  
Vol 40 (4) ◽  
pp. 527-556 ◽  
Author(s):  
Michael deBraga

A morphological study of the postcranial skeleton of Procolophon trigoniceps from the Lower Triassic of South Africa and Antarctica is undertaken. Procolophon shares a sister-group relationship with the procolophonid Tichvinskia from the Lower Triassic of Russia and is a basal member of Procolophonidae. This clade also includes the enigmatic taxon Sclerosaurus, believed most recently to be a pareiasaur relative. Owenettids form a separate lineage from Procolophonidae and are predominantly restricted to the Permian of both South Africa and Madagascar. A phylogenetically based assessment is considered, in which specialized modern taxa (sand lizards) are compared to their nonfossorial sister clade, allowing for "key innovations" to be identified. A similar comparison between owenettids and procolophonids reveals a number of apparent "key innovations" within procolophonids that are suggestive of a burrowing lifestyle for Procolophon.


2008 ◽  
Vol 39 (2) ◽  
pp. 133-154 ◽  
Author(s):  
Alberto Sáez ◽  
Kaoru Maeto ◽  
Alejandro Zaldivar-Riverón ◽  
Sergey Belokobylskij

AbstractThe taxonomy of the Asian genera of the subfamily Betylobraconinae, a small and understudied group within the hymenopteran family Braconidae, is revised. A new genus exclusively from the Asian region, Asiabregma gen. nov., containing three species (A. ryukyuensis sp. nov. (type species, Japan and Malaya), A. makiharai sp. nov. (Japan) and A. sulaensis (van Achterberg), comb. nov. (Indonesia)) is described. One new species of Aulosaphobracon, A. striatus sp. nov. from Vietnam, and one of Facitorus, F. amamioshimus sp. nov. from Japan, are also described. Based on molecular phylogenetic analyses using COI mtDNA and 28S rRNA sequences, the three genera previously placed in the tribe Facitorini, Facitorus, Conobregma and Jannya, together with Asiabregma gen. nov., are transferred to the rogadine tribe Yeliconini.


2008 ◽  
Vol 82 (3) ◽  
pp. 555-564 ◽  
Author(s):  
M. Hautmann

The Mysidiellidae are morphologically isolated among Triassic bivalves but share important characters with Late Paleozoic Ambonychioidea. Apart from a great similarity in the general shape of the shell, the most primitive mysidiellid genus Promysidiella resembles ambonychioids in the presence of a duplivincular-opisthodetic ligament system. Within the Mysidiellidae, this ligament type evolved into the transitional ligament system that characterizes Late Triassic Mysidiella. The phyletic polarity indicates that this evolution probably took place by paedomorphosis. New examinations of the shell microstructure of Mysidiella demonstrate the presence of simple prismatic and possibly foliated structures in the calcitic outer shell layer, which further supports an ambonychioid affinity. Therefore, the Mysidiellidae are removed from the Mytiloidea and assigned to the Ambonychioidea. The poorly known genus Protopis, which was originally included in the Mysidiellidae, probably had a parivincular ligament system and was hence a member of the Heteroconchia. Joannina, which was previously considered a junior synonym of Protopis, is re-established. The hinge margin of Joannina carries a well developed nymph but lacks teeth. These characters as well as its modioliform shape, anterior shell lobe, and pronounced diagonal carina link Joannina with the Late Triassic genus Healeya (Modiomorphoidea). Both taxa are herein placed in the new family Healeyidae, which differs from the morphologically similar Kalenteridae in the absence of elaborated hinge teeth. Protopis, as well as the recently described genera Leidapoconcha, Waijiaoella, and Qingyaniola, are tentatively assigned to the Healeyidae.


2021 ◽  
Author(s):  
Ksenia Juravel ◽  
Luis Porras ◽  
Sebastian Hoehna ◽  
Davide Pisani ◽  
Gert Wörheide

An accurate phylogeny of animals is needed to clarify their evolution, ecology, and impact on shaping the biosphere. Although multi-gene alignments of up to several hundred thousand amino acids are nowadays routinely used to test hypotheses of animal relationships, some nodes towards the root of the animal phylogeny are proving hard to resolve. While the relationships of the non-bilaterian lineages, primarily sponges (Porifera) and comb jellies (Ctenophora), have received much attention since more than a decade, controversies about the phylogenetic position of the worm-like bilaterian lineage Xenacoelomorpha and the monophyly of the "Superphylum" Deuterostomia have more recently emerged. Here we independently analyse novel genome gene content and morphological datasets to assess patterns of phylogenetic congruence with previous amino-acid derived phylogenetic hypotheses. Using statistical hypothesis testing, we show that both our datasets very strongly support sponges as the sister group of all the other animals, Xenoacoelomorpha as the sister group of the other Bilateria, and largely support monophyletic Deuterostomia. Based on these results, we conclude that the last common animal ancestor may have been a simple, filter-feeding organism without a nervous system and muscles, while the last common ancestor of Bilateria might have been a small, acoelomate-like worm without a through gut.


Sign in / Sign up

Export Citation Format

Share Document