STEPHEN G. BRUSH, A history of modern planetary physics. Volume One: Nebulous Earth. The origin of the Solar System and the core of the Earth from Laplace to Jeffreys, x+313 pp., figg.; (ISBN 0-521-44171-4). Volume Two: Transmuted past. The age of the Earth and the evolution of the elements fro Lyell to Patterson, x+134 pp., figg.; (ISBN 0-521-55213-3). Volume Three: Fruitful en-counters. The origin of the Solar System and of the Moon from Chamberlin to Apollo, x+354 pp., figg., (ISBN 0-521-55214-1) Cambridge, Cambridge University Press, 1996.

Nuncius ◽  
1997 ◽  
Vol 12 (1) ◽  
pp. 199-202
Author(s):  
MARCO SEGALA
Author(s):  
Bradley L. Jolliff

Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international. The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses. The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon. The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.


Author(s):  
Ian A. Crawford ◽  
Katherine H. Joy

The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap.


2009 ◽  
Vol 5 (S264) ◽  
pp. 475-477 ◽  
Author(s):  
David S. McKay ◽  
Louise Riofrio ◽  
Bonnie L. Cooper

AbstractThe lunar regolith (soil) has recorded a history of the early Moon, the Earth, and the entire solar system. A major goal of the developing lunar exploration program should be to find and play back existing fragments of that tape. By playing back the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the solar system and in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 GY, and the less intense bombardment occurring since that time. Decrease in bombardment allowed life to develop on Earth. This impact history is preserved as megaregolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history for the Earth and Moon possibly had profound effects on the origin and development of life. Life may have arrived via meteorite transport from a more quiet body, such as Mars. The solar system may have experienced bursts of severe radiation from the Sun, other stars or from unknown sources. The lunar regolith has also recorded a radiation history in the form of implanted and trapped solar wind and solar flare materials and radiation damage. The Moon can be considered as a giant tape recorder containing the history of the solar system. Lunar soil generated by small impacts will be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar recording can provide detailed snapshots of specific portions of solar and stellar variability.


Science ◽  
1982 ◽  
Vol 217 (4563) ◽  
pp. 891-898 ◽  
Author(s):  
Stephen G. Brush

The theories of Harold C. Urey (1893-1981) on the origin of the moon are discussed in relation to earlier ideas, especially George Howard Darwin's fission hypothesis. Urey's espousal of the idea that the moon had been captured by the earth and has preserved information about the earliest history of the solar system led him to advocate a manned lunar landing. Results from the Apollo missions, in particular the deficiency of siderophile elements in the lunar crust, led him to abandon the capture selenogony and tentatively adopt the fission hypothesis.


The suggestion for this Discussion Meeting was put forward more than three years ago. The format of the programme has changed many times since the original version, reflecting in part changing interests in different aspects of the subject. Of the 25 papers to be presented, only 5 discuss the constitution of the core, 13 deal with the geomagnetic field (including the secular variation and reversals) and all but 1 of the remaining 7 on geophysical interpretations are also concerned with the geomagnetic field. This emphasis on geomagnetism reflects the additional constraints that the absence or presence of a magnetic field may put on the constitution of all the planets and the Moon. In contrast to the Earth, the record of the first 10 9 years of planetary history is still at least partly preserved on the Moon, Mercury and Mars (and perhaps on Venus), and a study of this record on these other bodies may yield some information on the early history of the Earth. We have some seismic data for the Moon, but it is only for the Earth that we have a rich store of such data. In this connection, a word of caution is in order. It must not be forgotten that the structure of the Earth as revealed by seismic data is only a snapshot of what it is like today, and in many ways a very imperfect snapshot. There is no science of palaeoseismology, and seismic data tell us nothing about the structure of the Earth in the past nor of its evolution.


1989 ◽  
Vol 44 (10) ◽  
pp. 883-890 ◽  
Author(s):  
Michael J. Drake

Abstract Theories of the formation of the Earth strongly suggest that the Earth should have been substantially molten during and immediately after accretion. Estimates of the composition of the upper mantle indicate that many elements are present in chondritic ratios. Experimental measurements of element partition coefficients show that segregation of perovskite, majorite garnet, or olivine would fractionate the ratios of these elements away from chondritic values. The implication of these geochemical observations is that the Earth did not undergo extensive fractionation during and immediately following accretion. One possibility is that the Earth did not become substantially molten. Alternatively, if the Earth was indeed substantially molten, then it is possible that minerals were entrained in magma and were unable to segregate. In the former case, the accretional process must have delivered gravitational potential energy more slowly than current theory predicts, and an origin of the Moon in a giant impact would be unlikely. In the latter case, the high Mg/Si ratio in the upper mantle of the Earth relative to most classes of chondrites would be intrinsic to the silicate portion of the Earth. Unless significant amounts of Si exist in the core, the high Mg/Si ratio is a bulk planetary property, implying that the accretional process did not mix material between 1 AU and 2-4 AU.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


Sign in / Sign up

Export Citation Format

Share Document