The Role Of Unphosphorylated Myosin And The Actin Regulatory Proteins In The Latch-state

Author(s):  
Horia N. Roman ◽  
Nedjma B. Zitouni ◽  
Linda Kachmar ◽  
Apolinary Sobieszek ◽  
Anne-Marie Lauzon
Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1244
Author(s):  
Se-Jin Jeong ◽  
Jong-Gil Park ◽  
Goo Taeg Oh

Increased oxidative stress (OS) is considered a common etiology in the pathogenesis of cardiovascular disease (CVD). Therefore, the precise regulation of reactive oxygen species (ROS) in cardiovascular cells is essential to maintain normal physiological functions. Numerous regulators of cellular homeostasis are reportedly influenced by ROS. Hydrogen peroxide (H2O2), as an endogenous ROS in aerobic cells, is a toxic substance that can induce OS. However, many studies conducted over the past two decades have provided substantial evidence that H2O2 acts as a diffusible intracellular signaling messenger. Antioxidant enzymes, including superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins (Prdxs), maintain the balance of ROS levels against augmentation of ROS production during the pathogenesis of CVD. Especially, Prdxs are regulatory sensors of transduced intracellular signals. The intracellular abundance of Prdxs that specifically react with H2O2 act as regulatory proteins. In this review, we focus on the role of Prdxs in the regulation of ROS-induced pathological changes in the development of CVD.


2012 ◽  
Vol 61 (1) ◽  
pp. 84-94 ◽  
Author(s):  
Michaela Frolíková ◽  
Romana Stopková ◽  
Jana Antalíková ◽  
Peter M. Johnson ◽  
Pavel Stopka ◽  
...  

2011 ◽  
Vol 113 (1) ◽  
pp. 80-92 ◽  
Author(s):  
Galyna Kleveta ◽  
Kinga Borzęcka ◽  
Mykola Zdioruk ◽  
Maciej Czerkies ◽  
Hanna Kuberczyk ◽  
...  

Author(s):  
Naila Umer ◽  
Lena Arévalo ◽  
Sharang Phadke ◽  
Keerthika Lohanadan ◽  
Gregor Kirfel ◽  
...  

Profilins (PFNs) are key regulatory proteins for the actin polymerization in cells and are encoded in mouse and humans by four Pfn genes. PFNs are involved in cell mobility, cell growth, neurogenesis, and metastasis of tumor cells. The testes-specific PFN3 is localized in the acroplaxome–manchette complex of developing spermatozoa. We demonstrate that PFN3 further localizes in the Golgi complex and proacrosomal vesicles during spermiogenesis, suggesting a role in vesicle transport for acrosome formation. Using CRISPR/Cas9 genome editing, we generated mice deficient for Pfn3. Pfn3–/– males are subfertile, displaying a type II globozoospermia. We revealed that Pfn3–/– sperm display abnormal manchette development leading to an amorphous sperm head shape. Additionally, Pfn3–/– sperm showed reduced sperm motility resulting from flagellum deformities. We show that acrosome biogenesis is impaired starting from the Golgi phase, and mature sperm seems to suffer from a cytoplasm removal defect. An RNA-seq analysis revealed an upregulation of Trim27 and downregulation of Atg2a. As a consequence, mTOR was activated and AMPK was suppressed, resulting in the inhibition of autophagy. This dysregulation of AMPK/mTOR affected the autophagic flux, which is hallmarked by LC3B accumulation and increased SQSTM1 protein levels. Autophagy is involved in proacrosomal vesicle fusion and transport to form the acrosome. We conclude that this disruption leads to the observed malformation of the acrosome. TRIM27 is associated with PFN3 as determined by co-immunoprecipitation from testis extracts. Further, actin-related protein ARPM1 was absent in the nuclear fraction of Pfn3–/– testes and sperm. This suggests that lack of PFN3 leads to destabilization of the PFN3–ARPM1 complex, resulting in the degradation of ARPM1. Interestingly, in the Pfn3–/– testes, we detected increased protein levels of essential actin regulatory proteins, cofilin-1 (CFL1), cofilin-2 (CFL2), and actin depolymerizing factor (ADF). Taken together, our results reveal the importance for PFN3 in male fertility and implicate this protein as a candidate for male factor infertility in humans.


Oncotarget ◽  
2015 ◽  
Vol 6 (35) ◽  
pp. 37808-37823 ◽  
Author(s):  
Gang Luo ◽  
Ya-Ling Chao ◽  
Bo Tang ◽  
Bo-Sheng Li ◽  
Yu-Feng Xiao ◽  
...  

1990 ◽  
Vol 22 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Tadao Hashimoto ◽  
Yukuo Yoshida ◽  
Kunio Tagawa

2007 ◽  
Vol 17 (3) ◽  
pp. 173-186 ◽  
Author(s):  
Nadeem Samee ◽  
Marie-Christine de Vernejoul ◽  
Giovanni Levi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document