actin regulatory proteins
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 17)

H-INDEX

27
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Frédéric Larbret ◽  
Pierric Biber ◽  
Nicholas Dubois ◽  
Stoyan Ivanov ◽  
Laurence Lafanechere ◽  
...  

Actin networks are dynamically regulated through constant depolymerization and polymerization cycles. Although the fundamental mechanisms that govern these processes have been identified, the nature and role of post-translational modifications (PTMs) of actin and actin regulatory proteins are not completely understood. Here, we employed Actin CytoFRET, a method that we developed for real time detection of fluorescence resonance energy transfer (FRET) signals generated by actin dynamics, to screen a small library of PTM-interfering compounds on a biosensor leukemic T cell line. This strategy led to the identification of small molecule inhibitors of deubiquitinating enzymes (DUBs) as potent inducers of actin polymerization and blockers of chemotactic cell migration. The examination of the underlying mechanism further revealed that the actin depolymerizing protein cofilin represents a major effector of DUB inhibitor (DUBi)-induced actin reorganization. We found that DUB blockade results in the accumulation of polyubiquitinated proteins and ROS production, associated with cofilin oxidation and dephosphorylation on serine 3, which provokes uncontrolled actin polymerization impairing cell migration. Together, our study highlights DUBs as novel regulators of actin dynamics through ROS-dependent cofilin modulation, and shows that DUBi represent attractive novel tools to impede leukemic cell migration.


Author(s):  
Naila Umer ◽  
Lena Arévalo ◽  
Sharang Phadke ◽  
Keerthika Lohanadan ◽  
Gregor Kirfel ◽  
...  

Profilins (PFNs) are key regulatory proteins for the actin polymerization in cells and are encoded in mouse and humans by four Pfn genes. PFNs are involved in cell mobility, cell growth, neurogenesis, and metastasis of tumor cells. The testes-specific PFN3 is localized in the acroplaxome–manchette complex of developing spermatozoa. We demonstrate that PFN3 further localizes in the Golgi complex and proacrosomal vesicles during spermiogenesis, suggesting a role in vesicle transport for acrosome formation. Using CRISPR/Cas9 genome editing, we generated mice deficient for Pfn3. Pfn3–/– males are subfertile, displaying a type II globozoospermia. We revealed that Pfn3–/– sperm display abnormal manchette development leading to an amorphous sperm head shape. Additionally, Pfn3–/– sperm showed reduced sperm motility resulting from flagellum deformities. We show that acrosome biogenesis is impaired starting from the Golgi phase, and mature sperm seems to suffer from a cytoplasm removal defect. An RNA-seq analysis revealed an upregulation of Trim27 and downregulation of Atg2a. As a consequence, mTOR was activated and AMPK was suppressed, resulting in the inhibition of autophagy. This dysregulation of AMPK/mTOR affected the autophagic flux, which is hallmarked by LC3B accumulation and increased SQSTM1 protein levels. Autophagy is involved in proacrosomal vesicle fusion and transport to form the acrosome. We conclude that this disruption leads to the observed malformation of the acrosome. TRIM27 is associated with PFN3 as determined by co-immunoprecipitation from testis extracts. Further, actin-related protein ARPM1 was absent in the nuclear fraction of Pfn3–/– testes and sperm. This suggests that lack of PFN3 leads to destabilization of the PFN3–ARPM1 complex, resulting in the degradation of ARPM1. Interestingly, in the Pfn3–/– testes, we detected increased protein levels of essential actin regulatory proteins, cofilin-1 (CFL1), cofilin-2 (CFL2), and actin depolymerizing factor (ADF). Taken together, our results reveal the importance for PFN3 in male fertility and implicate this protein as a candidate for male factor infertility in humans.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1795
Author(s):  
Raphael Lamprecht

Evidence indicates that long-term memory formation creates long-lasting changes in neuronal morphology within a specific neuronal network that forms the memory trace. Dendritic spines, which include most of the excitatory synapses in excitatory neurons, are formed or eliminated by learning. These changes may be long-lasting and correlate with memory strength. Moreover, learning-induced changes in the morphology of existing spines can also contribute to the formation of the neuronal network that underlies memory. Altering spines morphology after memory consolidation can erase memory. These observations strongly suggest that learning-induced spines modifications can constitute the changes in synaptic connectivity within the neuronal network that form memory and that stabilization of this network maintains long-term memory. The formation and elimination of spines and other finer morphological changes in spines are mediated by the actin cytoskeleton. The actin cytoskeleton forms networks within the spine that support its structure. Therefore, it is believed that the actin cytoskeleton mediates spine morphogenesis induced by learning. Any long-lasting changes in the spine morphology induced by learning require the preservation of the spine actin cytoskeleton network to support and stabilize the spine new structure. However, the actin cytoskeleton is highly dynamic, and the turnover of actin and its regulatory proteins that determine and support the actin cytoskeleton network structure is relatively fast. Molecular models, suggested here, describe ways to overcome the dynamic nature of the actin cytoskeleton and the fast protein turnover and to support an enduring actin cytoskeleton network within the spines, spines stability and long-term memory. These models are based on long-lasting changes in actin regulatory proteins concentrations within the spine or the formation of a long-lasting scaffold and the ability for its recurring rebuilding within the spine. The persistence of the actin cytoskeleton network within the spine is suggested to support long-lasting spine structure and the maintenance of long-term memory.


2021 ◽  
pp. mbc.E21-04-0174
Author(s):  
Gregory Adams ◽  
Magdalena Preciado López ◽  
Alexander X. Cartagena-Rivera ◽  
Clare M. Waterman

Cancer cells migrating in confined microenvironments exhibit plasticity of migration modes. Confinement of contractile cells in a non-adhesive environment drives ‘leader bleb-based migration’ (LBBM), morphologically characterized by a long bleb that points in the direction of movement separated from a cell body by a contractile neck. Although cells undergoing LBBM have been visualized within tumors, the organization of organelles and actin regulatory proteins mediating LBBM is unknown. We analyzed the localization of fluorescent organelle-specific markers and actin-associated proteins in human melanoma and osteosarcoma cells undergoing LBBM. We found that organelles from the endo-lysosomal, secretory and metabolic systems as well as the vimentin and microtubule cytoskeletons localized primarily in the cell body, with some endoplasmic reticulum, microtubules, and mitochondria extending into the leader bleb. Overexpression of fluorescent-tagged actin regulatory proteins showed that actin assembly factors localized towards the leader bleb tip, contractility regulators and crosslinkers in the cell body cortex and neck, and crosslinkers additionally throughout the leader bleb. Quantitative analysis showed that excess filamin-A and fascin-1 increased migration speed and persistence, while their depletion by siRNA indicate a requirement in promoting cortical tension and pressure to drive LBBM, indicating the critical role of specific actin crosslinkers in LBBM. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]


2021 ◽  
Author(s):  
Zane G Moreland ◽  
Fangfang Jiang ◽  
Carlos Aguilar ◽  
Melanie Barzik ◽  
Rui Gong ◽  
...  

The assembly and maintenance of actin-based mechanosensitive stereocilia in the cochlea is critical for lifelong hearing. Myosin-15 (MYO15) is hypothesized to modulate stereocilia height by trafficking actin regulatory proteins to their tip compartments, where actin polymerization must be precisely controlled during development. We identified a mutation (p.D1647G) in the MYO15 motor-domain that initially maintained trafficking, but caused progressive hearing loss by stunting stereocilia growth, revealing an additional function for MYO15. Consistent with its maintenance of tip trafficking in vivo, purified p.D1647G MYO15 modestly reduced actin-stimulated ATPase activity in vitro. Using ensemble and single-filament fluorescence in vitro assays, we demonstrated that wild-type MYO15 directly accelerated actin filament polymerization by driving nucleation, whilst p.D1647G MYO15 blocked this activity. Collectively, our studies suggest direct actin nucleation by MYO15 at the stereocilia tip is necessary for elongation in vivo, and that this is a primary mechanism disrupted in DFNB3 hereditary human hearing loss.


Author(s):  
Loïc Dupré ◽  
Kaan Boztug ◽  
Laurène Pfajfer

The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.


2021 ◽  
Vol 220 (4) ◽  
Author(s):  
Ulrich Dobramysl ◽  
Iris Katharina Jarsch ◽  
Yoshiko Inoue ◽  
Hanae Shimo ◽  
Benjamin Richier ◽  
...  

Assemblies of actin and its regulators underlie the dynamic morphology of all eukaryotic cells. To understand how actin regulatory proteins work together to generate actin-rich structures such as filopodia, we analyzed the localization of diverse actin regulators within filopodia in Drosophila embryos and in a complementary in vitro system of filopodia-like structures (FLSs). We found that the composition of the regulatory protein complex where actin is incorporated (the filopodial tip complex) is remarkably heterogeneous both in vivo and in vitro. Our data reveal that different pairs of proteins correlate with each other and with actin bundle length, suggesting the presence of functional subcomplexes. This is consistent with a theoretical framework where three or more redundant subcomplexes join the tip complex stochastically, with any two being sufficient to drive filopodia formation. We provide an explanation for the observed heterogeneity and suggest that a mechanism based on multiple components allows stereotypical filopodial dynamics to arise from diverse upstream signaling pathways.


2020 ◽  
Vol 117 (32) ◽  
pp. 19376-19387 ◽  
Author(s):  
Samantha A. Scott ◽  
Jingjing Fu ◽  
Pamela V. Chang

Inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis, are associated with dysbiosis of the gut microbiome. Emerging evidence suggests that small-molecule metabolites derived from bacterial breakdown of a variety of dietary nutrients confer a wide array of host benefits, including amelioration of inflammation in IBDs. Yet, in many cases, the molecular pathways targeted by these molecules remain unknown. Here, we describe roles for three metabolites—indole-3-ethanol, indole-3-pyruvate, and indole-3-aldehyde—which are derived from gut bacterial metabolism of the essential amino acid tryptophan, in regulating intestinal barrier function. We determined that these metabolites protect against increased gut permeability associated with a mouse model of colitis by maintaining the integrity of the apical junctional complex and its associated actin regulatory proteins, including myosin IIA and ezrin, and that these effects are dependent on the aryl hydrocarbon receptor. Our studies provide a deeper understanding of how gut microbial metabolites affect host defense mechanisms and identify candidate pathways for prophylactic and therapeutic treatments for IBDs.


2020 ◽  
Vol 21 (12) ◽  
pp. 4285
Author(s):  
Katarzyna Robaszkiewicz ◽  
Małgorzata Śliwinska ◽  
Joanna Moraczewska

In striated muscle the extent of the overlap between actin and myosin filaments contributes to the development of force. In slow twitch muscle fibers actin filaments are longer than in fast twitch fibers, but the mechanism which determines this difference is not well understood. We hypothesized that tropomyosin isoforms Tpm1.1 and Tpm3.12, the actin regulatory proteins, which are specific respectively for fast and slow muscle fibers, differently stabilize actin filaments and regulate severing of the filaments by cofilin-2. Using in vitro assays, we showed that Tpm3.12 bound to F-actin with almost 2-fold higher apparent binding constant (Kapp) than Tpm1.1. Cofilin2 reduced Kapp of both tropomyosin isoforms. In the presence of Tpm1.1 and Tpm3.12 the filaments were longer than unregulated F-actin by 25% and 40%, respectively. None of the tropomyosins affected the affinity of cofilin-2 for F-actin, but according to the linear lattice model both isoforms increased cofilin-2 binding to an isolated site and reduced binding cooperativity. The filaments decorated with Tpm1.1 and Tpm3.12 were severed by cofilin-2 more often than unregulated filaments, but depolymerization of the severed filaments was inhibited. The stabilization of the filaments by Tpm3.12 was more efficient, which can be attributed to lower dynamics of Tpm3.12 binding to actin.


2020 ◽  
Vol 31 (2) ◽  
pp. 374-391 ◽  
Author(s):  
Balajikarthick Subramanian ◽  
Justin Chun ◽  
Chandra Perez-Gill ◽  
Paul Yan ◽  
Isaac E. Stillman ◽  
...  

BackgroundMutations in the gene encoding inverted formin-2 (INF2), a member of the formin family of actin regulatory proteins, are among the most common causes of autosomal dominant FSGS. INF2 is regulated by interaction between its N-terminal diaphanous inhibitory domain (DID) and its C-terminal diaphanous autoregulatory domain (DAD). INF2 also modulates activity of other formins, such as the mDIA subfamily, and promotes stable microtubule assembly. Why the disease-causing mutations are restricted to the N terminus and how they cause human disease has been unclear.MethodsWe examined INF2 isoforms present in podocytes and evaluated INF2 cleavage as an explanation for immunoblot findings. We evaluated the expression of INF2 N- and C-terminal fragments in human kidney disease conditions. We also investigated the localization and functions of the DID-containing N-terminal fragment in podocytes and assessed whether the FSGS-associated R218Q mutation impairs INF2 cleavage or the function of the N-fragment.ResultsThe INF2-CAAX isoform is the predominant isoform in podocytes. INF2 is proteolytically cleaved, a process mediated by cathepsin proteases, liberating the N-terminal DID to function independently. Although the N-terminal region normally localizes to podocyte foot processes, it does not do so in the presence of FSGS-associated INF2 mutations. The C-terminal fragment localizes to the cell body irrespective of INF2 mutations. In podocytes, the N-fragment localizes to the plasma membrane, binds mDIA1, and promotes cell spreading in a cleavage-dependent way. The disease-associated R218Q mutation impairs these N-fragment functions but not INF2 cleavage.ConclusionsINF2 is cleaved into an N-terminal DID–containing fragment and a C-terminal DAD–containing fragment. Cleavage allows the N-terminal fragment to function independently and helps explain the clustering of FSGS-associated mutations.


Sign in / Sign up

Export Citation Format

Share Document