Human Neutrophils Stimulated With Collagen Breakdown Product PGP Results In Chemotaxis, Instant Calcium Influx And CXCL8 Release

Author(s):  
Saskia A. Overbeek ◽  
Saskia Braber ◽  
Paul A.J. Henricks ◽  
Alleta D. Kraneveld ◽  
Frans Nijkamp ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anderson B. Guimaraes-Costa ◽  
John P. Shannon ◽  
Ingrid Waclawiak ◽  
Jullyanna Oliveira ◽  
Claudio Meneses ◽  
...  

AbstractApart from bacterial formyl peptides or viral chemokine mimicry, a non-vertebrate or insect protein that directly attracts mammalian innate cells such as neutrophils has not been molecularly characterized. Here, we show that members of sand fly yellow salivary proteins induce in vitro chemotaxis of mouse, canine and human neutrophils in transwell migration or EZ-TAXIScan assays. We demonstrate murine neutrophil recruitment in vivo using flow cytometry and two-photon intravital microscopy in Lysozyme-M-eGFP transgenic mice. We establish that the structure of this ~ 45 kDa neutrophil chemotactic protein does not resemble that of known chemokines. This chemoattractant acts through a G-protein-coupled receptor and is dependent on calcium influx. Of significance, this chemoattractant protein enhances lesion pathology (P < 0.0001) and increases parasite burden (P < 0.001) in mice upon co-injection with Leishmania parasites, underlining the impact of the sand fly salivary yellow proteins on disease outcome. These findings show that some arthropod vector-derived factors, such as this chemotactic salivary protein, activate rather than inhibit the host innate immune response, and that pathogens take advantage of these inflammatory responses to establish in the host.


2018 ◽  
Vol 51 (6) ◽  
pp. 2776-2793 ◽  
Author(s):  
Yung-Fong Tsai ◽  
Shun-Chin Yang ◽  
Wen-Yi Chang ◽  
Jih-Jung Chen ◽  
Chun-Yu Chen ◽  
...  

Background/Aims: Formyl peptide receptors (FPRs) recognize different endogenous and exogenous molecular stimuli and mediate neutrophil activation. Dysregulation of excessive neutrophil activation and the resulting immune responses can induce acute lung injury (ALI) in the host. Accordingly, one promising approach to the treatment of neutrophil-dominated inflammatory diseases involves therapeutic FPR1 inhibition. Methods: We extracted a potent FPR1 antagonist from Garcinia multiflora Champ. (GMC). The inhibitory effects of GMC on superoxide anion release and elastase degranulation from activated human neutrophils were determined with spectrophotometric analysis. Reactive oxygen species (ROS) production and the FPR1 binding ability of neutrophils were assayed by flow cytometry. Signaling transduction mediated by GMC in response to chemoattractants was assessed with a calcium influx assay and western blotting. A lipopolysaccharide (LPS)-induced ALI mouse model was used to determine the therapeutic effects of GMC in vivo. Results: GMC significantly reduced superoxide anion release, the reactive oxidants derived therefrom, and elastase degranulation mediated through selective, competitive FPR1 blocking in N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF)-stimulated human neutrophils. In cell-free systems, GMC was unable to scavenge superoxide anions or suppress elastase activity. GMC produced a right shift in fMLF-activated concentration-response curves and was confirmed to be a competitive FPR1 antagonist. GMC binds to FPR1 not only in neutrophils, but also FPR1 in neutrophil-like THP-1 and hFPR1-transfected HEK293 cells. Furthermore, the mobilization of calcium and phosphorylation of mitogen-activated protein kinases and Akt, which are involved in FPR1-mediated downstream signaling, was competitively blocked by GMC. In an in vivo study, GMC significantly reduced pulmonary edema, neutrophil infiltration, and alveolar damage in LPS-induced ALI mice. Conclusion: Our findings demonstrate that GMC is a natural competitive FPR1 inhibitor, which makes it a possible anti-inflammatory treatment option for patients critically inflicted with FPR1-mediated neutrophilic lung damage.


2017 ◽  
Vol 114 (17) ◽  
pp. 4483-4488 ◽  
Author(s):  
Xu Wang ◽  
Weiting Qin ◽  
Xiaohan Xu ◽  
Yuyun Xiong ◽  
Yisen Zhang ◽  
...  

Although the neutrophil recruitment cascade during inflammation has been well described, the molecular players that halt neutrophil chemotaxis remain unclear. In this study, we found that lipopolysaccharide (LPS) was a potent stop signal for chemotactic neutrophil migration. Treatment with an antagonist of the ATP receptor (P2X1) in primary human neutrophils or knockout of the P2X1 receptor in neutrophil-like differentiated HL-60 (dHL-60) cells recovered neutrophil chemotaxis. Further observations showed that LPS-induced ATP release through connexin 43 (Cx43) hemichannels was responsible for the activation of the P2X1 receptor and the subsequent calcium influx. Increased intracellular calcium stopped neutrophil chemotaxis by activating myosin light chain (MLC) through the myosin light chain kinase (MLCK)-dependent pathway. Taken together, these data identify a previously unknown function of LPS-induced autocrine ATP signaling in inhibiting neutrophil chemotaxis by enhancing MLC phosphorylation, which provides important evidence that stoppage of neutrophil chemotaxis at infectious foci plays a key role in the defense against invading pathogens.


2002 ◽  
Vol 277 (16) ◽  
pp. 13473-13478 ◽  
Author(s):  
Frédéric Barabé ◽  
Guillaume Paré ◽  
Maria J. G. Fernandes ◽  
Sylvain G. Bourgoin ◽  
Paul H. Naccache

2000 ◽  
Vol 48 (4) ◽  
pp. 592-598 ◽  
Author(s):  
Carl J. Hauser ◽  
Zoltan Fekete ◽  
David H. Livingston ◽  
John Adams ◽  
Matthew Garced ◽  
...  

2007 ◽  
Vol 309 (1-2) ◽  
pp. 151-156 ◽  
Author(s):  
Miriam S. Giambelluca ◽  
Oscar A. Gende

2010 ◽  
Vol 286 (5) ◽  
pp. 3509-3519 ◽  
Author(s):  
Louis Marois ◽  
Guillaume Paré ◽  
Myriam Vaillancourt ◽  
Emmanuelle Rollet-Labelle ◽  
Paul H. Naccache

1995 ◽  
Vol 310 (2) ◽  
pp. 681-688 ◽  
Author(s):  
E Krump ◽  
M Pouliot ◽  
P H Naccache ◽  
P Borgeat

The relationship between intracellular calcium concentration ([Ca2+]i), the release of arachidonic acid and the synthesis of leukotriene B4 (LTB4) was investigated using Ca(2+)-depleted human polymorphonuclear leucocytes (PMNs) in which [Ca2+]i can be manipulated by varying the concentration of exogenous Ca2+ added with agonists. In this model, Ca2+, platelet-activating factor (PAF) and N-formyl-Met-Leu-Phe (FMLP), added alone, were unable to induce arachidonic acid release or LTB4 synthesis, as assessed by measurements of the products by MS and HPLC, respectively. However, the simultaneous addition of Ca2+ and either PAF or FMLP to these Ca(2+)-depleted PMNs resulted in an influx of Ca2+ proportional to the extracellular concentration of Ca2+ and caused a substantial release of arachidonic acid and synthesis of LTB4. The [Ca2+]i values for threshold and maximal arachidonic acid release were found to be 150 nM and 350 nM respectively, suggesting the involvement of cytosolic phospholipase A2 (cPLA2). Under stimulatory conditions resulting in similar [Ca2+]i, Ca(2+)-depleted PMNs released significant amounts of arachidonic acid but normal (Ca(2+)-repleted) PMNs did not, indicating that Ca2+ depletion of PMNs altered the normal regulation of arachidonic acid release and facilitated the release of the fatty acid upon stimulation with agonists. cPLA2 and mitogen-activated protein kinase (MAP kinase) phosphorylation, as assessed by changes of electrophoretic mobility, occurred in both Ca(2+)-depleted and Ca(2+)-depleted PMNs upon addition of agonist. These data demonstrate that in Ca(2+)-depleted PMNs stimulated with agonists, arachidonic acid release and LTB4 synthesis correlated with extracellular Ca2+ influx.


2022 ◽  
Vol 221 (2) ◽  
Author(s):  
Ahmet Höke

Activation of the NAD hydrolase domain of Sarm1 mediates axonal degeneration caused by chemotherapy drugs, but the downstream events are unknown. In this issue, Li and colleagues (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202106080) demonstrate that cADPR, a breakdown product of NAD, mediates paclitaxel-induced axonal degeneration by promoting influx of calcium into the axons.


Sign in / Sign up

Export Citation Format

Share Document