scholarly journals cADPR induced calcium influx mediates axonal degeneration caused by paclitaxel

2022 ◽  
Vol 221 (2) ◽  
Author(s):  
Ahmet Höke

Activation of the NAD hydrolase domain of Sarm1 mediates axonal degeneration caused by chemotherapy drugs, but the downstream events are unknown. In this issue, Li and colleagues (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202106080) demonstrate that cADPR, a breakdown product of NAD, mediates paclitaxel-induced axonal degeneration by promoting influx of calcium into the axons.

Author(s):  
Saskia A. Overbeek ◽  
Saskia Braber ◽  
Paul A.J. Henricks ◽  
Alleta D. Kraneveld ◽  
Frans Nijkamp ◽  
...  

2003 ◽  
Vol 90 (5) ◽  
pp. 3566-3571 ◽  
Author(s):  
Albert C. Lo ◽  
Carl Y. Saab ◽  
Joel A. Black ◽  
Stephen G. Waxman

Axonal degeneration within the spinal cord contributes substantially to neurological disability in multiple sclerosis (MS). Thus neuroprotective therapies that preserve axons, so that they maintain their integrity and continue to function, might be expected to result in improved neurological outcome. Sodium channels are known to provide a route for sodium influx that can drive calcium influx, via reverse operation of the Na+/Ca2+ exchanger, after injury to axons within the CNS, and sodium channel blockers have been shown to protect CNS axons from degeneration after experimental anoxic, traumatic, and nitric oxide (NO)-induced injury. In this study, we asked whether phenytoin, which is known to block sodium channels, can protect spinal cord axons from degeneration in mice with experimental allergic encephalomyelitis (EAE), which display substantial axonal degeneration and clinical paralysis. We demonstrate that the loss of dorsal corticospinal tract (63%) and dorsal column (cuneate fasciculus; 43%) axons in EAE is significantly ameliorated (corticospinal tract: 28%; cuneate fasciculus: 17%) by treatment with phenytoin. Spinal cord compound action potentials (CAP) were significantly attenuated in untreated EAE, whereas spinal cords from phenytoin-treated EAE had robust CAPs, similar to those from phenytoin-treated control mice. Clinical scores in phenytoin-treated EAE at 28 days were significantly improved (1.5, i.e., minor righting reflex abnormalities) compared with untreated EAE (3.8, i.e., near-complete hindlimb paralysis). Our results demonstrate that phenytoin has a protective effect in vivo on spinal cord axons, preventing their degeneration, maintaining their ability to conduct action potentials, and improving clinical status in a model of neuroinflammation.


2007 ◽  
Vol 74 ◽  
pp. 37-45 ◽  
Author(s):  
James W. Putney

The original hypothesis put forth by Bob Michell in his seminal 1975 review held that inositol lipid breakdown was involved in the activation of plasma membrane calcium channels or ‘gates’. Subsequently, it was demonstrated that while the interposition of inositol lipid breakdown upstream of calcium signalling was correct, it was predominantly the release of Ca2+ that was activated, through the formation of Ins(1,4,5)P3. Ca2+ entry across the plasma membrane involved a secondary mechanism signalled in an unknown manner by depletion of intracellular Ca2+ stores. In recent years, however, additional non-store-operated mechanisms for Ca2+ entry have emerged. In many instances, these pathways involve homologues of the Drosophila trp (transient receptor potential) gene. In mammalian systems there are seven members of the TRP superfamily, designated TRPC1–TRPC7, which appear to be reasonably close structural and functional homologues of Drosophila TRP. Although these channels can sometimes function as store-operated channels, in the majority of instances they function as channels more directly linked to phospholipase C activity. Three members of this family, TRPC3, 6 and 7, are activated by the phosphoinositide breakdown product, diacylglycerol. Two others, TRPC4 and 5, are also activated as a consequence of phospholipase C activity, although the precise substrate or product molecules involved are still unclear. Thus the TRPCs represent a family of ion channels that are directly activated by inositol lipid breakdown, confirming Bob Michell's original prediction 30 years ago.


1995 ◽  
Vol 74 (05) ◽  
pp. 1323-1328 ◽  
Author(s):  
Dominique Lasne ◽  
José Donato ◽  
Hervé Falet ◽  
Francine Rendu

SummarySynthetic peptides (TRAP or Thrombin Receptor Activating Peptide) corresponding to at least the first five aminoacids of the new N-terminal tail generated after thrombin proteolysis of its receptor are effective to mimic thrombin. We have studied two different TRAPs (SFLLR, and SFLLRN) in their effectiveness to induce the different platelet responses in comparison with thrombin. Using Indo-1/AM- labelled platelets, the maximum rise in cytoplasmic ionized calcium was lower with TRAPs than with thrombin. At threshold concentrations allowing maximal aggregation (50 μM SFLLR, 5 μM SFLLRN and 1 nM thrombin) the TRAPs-induced release reaction was about the same level as with thrombin, except when external calcium was removed by addition of 1 mM EDTA. In these conditions, the dense granule release induced by TRAPs was reduced by over 60%, that of lysosome release by 75%, compared to only 15% of reduction in the presence of thrombin. Thus calcium influx was more important for TRAPs-induced release than for thrombin-induced release. At strong concentrations giving maximal aggregation and release in the absence of secondary mediators (by pretreatment with ADP scavengers plus aspirin), SFLLRN mobilized less calcium, with a fast return towards the basal level and induced smaller lysosome release than did thrombin. The results further demonstrate the essential role of external calcium in triggering sustained and full platelet responses, and emphasize the major difference between TRAP and thrombin in mobilizing [Ca2+]j. Thus, apart from the proteolysis of the seven transmembrane receptor, another thrombin binding site or thrombin receptor interaction is required to obtain full and complete responses.


1993 ◽  
Vol 69 (05) ◽  
pp. 496-502 ◽  
Author(s):  
Yasuo Ikeda ◽  
Makoto Handa ◽  
Tetsuji Kamata ◽  
Koichi Kawano ◽  
Yohko Kawai ◽  
...  

SummaryWe found that the binding of multimeric vWF to GP Ib under a shear force of 108 dynes/cm2 resulted in the transmembrane flux of Ca2+ ions with a two-to three-fold increase in their intracellular concentration ([Ca2+]i). The blockage of this event, obtained by inhibiting the vWF-GP Ib interaction, suppressed aggregation. In contrast, the blockage of vWF binding to GP IIb-IIIa, as well as the prevention of activation caused by increased intracellular cAMP levels, inhibited aggregation but had no significant effect on [Ca2+]i increase. A monomeric recombinant fragment of vWF containing the GP Ib-binding domain of the molecule (residues 445-733) prevented all effects mediated by multimeric vWF but, by itself, failed to support the increase in [Ca2+]i and aggregation. These results suggest that the binding of multimeric vWF to GP Ib initiates platelets aggregation induced by high shear stress by mediating a transmembrane flux of Ca2+ ions, perhaps through a receptor-dependent calcium channel. The increase in [Ca2+]i may act as an intracellular message and cause the activation of GP IIb-IIIa; the latter receptor then binds vWF and mediates irreversible aggregation.


1980 ◽  
Vol 43 (02) ◽  
pp. 099-103 ◽  
Author(s):  
J M Whaun ◽  
P Lievaart ◽  

SummaryBlood from normal full term infants, mothers and normal adults was collected in citrate. Citrated platelet-rich plasma was prelabelled with 3H-adenine and reacted with release inducers, collagen and adrenaline. Adenine nucleotide metabolism, total adenine nucleotide levels and changes in sizes of these pools were determined in platelets from these three groups of subjects.At rest, the platelet of the newborn infant, compared to that of the mother and normal adult, possessed similar amounts of adenosine triphosphate (ATP), 4.6 ± 0.2 (SD), 5.0 ± 1.1, 4.9 ± 0.6 µmoles ATP/1011 platelets respectively, and adenosine diphosphate (ADP), 2.4 ± 0.7, 2.8 ± 0.6, 3.0 ± 0.3 umoles ADP/1011 platelets respectively. However the marked elevation of specific radioactivity of ADP and ATP in these resting platelets indicated the platelet of the neonate has decreased adenine nucleotide stores.In addition to these decreased stores of adenine nucleotides, infant platelets showed significantly impaired release of ADP and ATP on exposure to collagen. The release of ADP in infants, mothers, and other adults was 0.9 ± 0.5 (SD), 1.5 ± 0.5, 1.5 ± 0.1 umoles/1011 platelets respectively; that of ATP was 0.6 ± 0.3, 1.0 ± 0.1,1.3 ± 0.2 µmoles/1011 platelets respectively. With collagen-induced release, platelets of newborn infants compared to those of other subjects showed only slight increased specific radioactivities of adenine nucleotides over basal levels. The content of metabolic hypoxanthine, a breakdown product of adenine nucleotides, increased in both platelets and plasma in all subjects studied.In contrast, with adrenaline as release inducer, the platelets of the newborn infant showed no adenine nucleotide release, no change in total ATP and level of radioactive hypoxanthine, and minimal change in total ADP. The reason for this decreased adrenaline reactivity of infant platelets compared to reactivity of adult platelets is unknown.Infant platelets may have different membranes, with resulting differences in regulation of cellular processes, or alternatively, may be refractory to catecholamines because of elevated levels of circulating catecholamines in the newborn period.


1965 ◽  
Vol 14 (03/04) ◽  
pp. 490-499 ◽  
Author(s):  
S Niewiarowski ◽  
R Farbiszewski ◽  
A Popławski

SummaryIt has been found that fibrinogen breakdown product – antithrombin VI – is neutralized by the purified preparation of platelet factor 4, obtained by means of zinc acetate precipitation and DEAE chromatography column. It has been suggested that antiheparin activity of platelet factor 4 and its ability to neutralize antithrombin VI may be related to the same protein.The purified preparation of platelet factor 4 does not influence the fibrinogen – fibrin conversion by thrombin. This means that platelet factor 2 and platelet factor 4 are not the same substance.Crude platelet extracts neutralize antithrombin III and V. However, the purified product did not interferes with the action of these antithrombins.


Sign in / Sign up

Export Citation Format

Share Document