Critical Role For Muc5b In Innate Immune Defense In Vivo

Author(s):  
Christopher M. Evans ◽  
Michelle Roy ◽  
Melissa L. McElwee ◽  
Ryan Boerner ◽  
Victoria N. Mdoe ◽  
...  
2013 ◽  
Vol 81 (10) ◽  
pp. 3855-3864 ◽  
Author(s):  
Amir I. Tukhvatulin ◽  
Ilya I. Gitlin ◽  
Dmitry V. Shcheblyakov ◽  
Natalia M. Artemicheva ◽  
Lyudmila G. Burdelya ◽  
...  

ABSTRACTPathogen recognition receptors (PRRs) are essential components of host innate immune systems that detect specific conserved pathogen-associated molecular patterns (PAMPs) presented by microorganisms. Members of two families of PRRs, transmembrane Toll-like receptors (TLRs 1, 2, 4, 5, and 6) and cytosolic NOD receptors (NOD1 and NOD2), are stimulated upon recognition of various bacterial PAMPs. Such stimulation leads to induction of a number of immune defense reactions, mainly triggered via activation of the transcription factor NF-κB. While coordination of responses initiated via different PRRs sensing multiple PAMPS present during an infection makes clear biological sense for the host, such interactions have not been fully characterized. Here, we demonstrate that combined stimulation of NOD1 and TLR5 (as well as other NOD and TLR family members) strongly potentiates activity of NF-κB and induces enhanced levels of innate immune reactions (e.g., cytokine production) bothin vitroandin vivo. Moreover, we show that an increased level of NF-κB activity plays a critical role in formation of downstream responses. In live mice, synergy between these receptors resulting in potentiation of NF-κB activity was organ specific, being most prominent in the gastrointestinal tract. Coordinated activity of NOD1 and TLR5 significantly increased protection of mice against enteroinvasiveSalmonellainfection. Obtained results suggest that cooperation of NOD and TLR receptors is important for effective responses to microbial infectionin vivo.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Ruanmei Sheng ◽  
Xiaoming Zhong ◽  
Zhiwen Yang ◽  
Xuemin Wang

Neutrophils play a critical role in innate immune defense and directly contribute to infectious and autoimmune ailments. Great efforts are underway to better understand the nature of neutrophilic inflammation. Of note, CARD9, a myeloid cell-specific signaling protein that mainly expresses in macrophages and dendritic cells, is also present in neutrophils, emerging as a critical mediator for intercellular communication. CARD9–deficiency neutrophils display an increased susceptibility to fungal infection that primarily localize to the central nervous system, subcutaneous, and skin tissue. Additionally, CARD9–deficiency neutrophils are associated with some autoimmune diseases and even provide protection against a few bacteria. Here, the review summarizes recent preclinical and clinical advances that have provided a novel insight into the pathogenesis of CARD9 deficiency in neutrophils.


2010 ◽  
Vol 207 (8) ◽  
pp. 1745-1755 ◽  
Author(s):  
Petr Broz ◽  
Kim Newton ◽  
Mohamed Lamkanfi ◽  
Sanjeev Mariathasan ◽  
Vishva M. Dixit ◽  
...  

Intracellular pathogens and endogenous danger signals in the cytosol engage NOD-like receptors (NLRs), which assemble inflammasome complexes to activate caspase-1 and promote the release of proinflammatory cytokines IL-1β and IL-18. However, the NLRs that respond to microbial pathogens in vivo are poorly defined. We show that the NLRs NLRP3 and NLRC4 both activate caspase-1 in response to Salmonella typhimurium. Responding to distinct bacterial triggers, NLRP3 and NLRC4 recruited ASC and caspase-1 into a single cytoplasmic focus, which served as the site of pro–IL-1β processing. Consistent with an important role for both NLRP3 and NLRC4 in innate immune defense against S. typhimurium, mice lacking both NLRs were markedly more susceptible to infection. These results reveal unexpected redundancy among NLRs in host defense against intracellular pathogens in vivo.


2021 ◽  
Vol 28 ◽  
Author(s):  
Werner Hoffmann

: Mucous epithelia are protected by complex mucus barrier layers, which are part of the innate immune defense. Trefoil factor family peptides TFF1, TFF2, and TFF3 have lectin activities and are predominantly co-secreted together with mucins from these epithelia. TFF1 and TFF2 are mainly expressed in the gastric mucosa; whereas TFF3 is rather widely secreted from most mucous epithelia and their glands. TFF1 and TFF3 consist of a single TFF domain and an additional free 7th cysteine residue; whereas TFF2 contains two TFF domains. Systematic analyses of the molecular forms of TFFs gave new insights into their diverse molecular functions. TFF1 mainly exists as a monomer with an unusual free thiol group and only minor amounts form a disulfide linked homodimer as well as heterodimers with gastrokine-2 and IgG-Fc-binding protein (FCGBP). TFF3 mainly forms a heterodimer with FCGBP in vivo, but binds also Deleted in Malignant Brain Tumors/gp340 (DMBT1gp340) in vitro. In contrast, TFF2 binds as a lectin to a conserved O-linked carbohydrate moiety of the mucin MUC6. Both FCGBP and DMBT1gp340 are secreted from most mucous epithelia and their glands and are involved in mucosal innate immunity. Thus, a new picture emerged pointing to functions of TFF3-FCGBP (and TFF1-FCGBP) for mucosal innate immune defense, e.g. supporting the clearing of microorganisms. Such a function could be well be supported by DMBT1gp340. In contrast, the TFF2/MUC6 complex probably stabilizes physically the inner adherent gastric mucus layer. Furthermore, there are indications that TFF3-FCGBP might play also a role in blood vessels.


2020 ◽  
Vol 104 ◽  
pp. 506-516
Author(s):  
Jingguang Wei ◽  
Chen Li ◽  
Jisheng Ou ◽  
Xin Zhang ◽  
Zetian Liu ◽  
...  

2017 ◽  
Vol 70 ◽  
pp. 13-24 ◽  
Author(s):  
Liang Lu ◽  
Xu Wang ◽  
Sizhong Wu ◽  
Xuejiao Song ◽  
Ziqi Zou ◽  
...  

2018 ◽  
Vol 315 (4) ◽  
pp. F812-F823 ◽  
Author(s):  
Vijay Saxena ◽  
David S. Hains ◽  
John Ketz ◽  
Melinda Chanley ◽  
John D. Spencer ◽  
...  

The urinary tract is usually culture negative despite its close proximity to microbial flora. The precise mechanism by which the kidneys and urinary tract defends against infection is not well understood. The initial kidney cells to encounter ascending pathogens are the collecting tubule cells that consist of principal cells (PCs) that express aquaporin 2 (AQP2) and intercalated cells (ICs) that express vacuolar H+-ATPase (V-ATPase, B1 subunit). We have previously shown that ICs are involved with the human renal innate immune defense. Here we generated two reporter mice, VATPase B1-cre+tdT+mice to fluorescently label ICs and AQP2-cre+tdT+mice to fluorescently label PCs, and then performed flow sorting to enrich PCs and ICs for analysis. Isolated ICs and PCs along with proximal tubular cells were used to measure antimicrobial peptide (AMP) mRNA expression. ICs and PCs were significantly enriched for AMPs. Isolated ICs responded to uropathogenic Escherichia coli (UPEC) challenge in vitro and had higher RNase4 gene expression than control while both ICs and PCs responded to UPEC challenge in vivo by upregulating Defb1 mRNA expression. To our knowledge, this is the first report of isolating murine collecting tubule cells and performing targeted analysis for multiple classes of AMPs.


2016 ◽  
Vol 230 (2) ◽  
pp. 297-302 ◽  
Author(s):  
Martin N. Møller ◽  
Svend Kirkeby ◽  
Per Cayé-Thomasen

Sign in / Sign up

Export Citation Format

Share Document