Increased Cell Surface Expression Of Respiratory Syncytial Virus Receptor (Nucleolin) In Ciliated Columnar Airway Epithelial Cells From Children With Cystic Fibrosis And Asthma

Author(s):  
Richard G. Hegele ◽  
Peter Mastrangelo ◽  
Angela Fonceca ◽  
Paul S. McNamara
2011 ◽  
Vol 300 (1) ◽  
pp. L88-L101 ◽  
Author(s):  
Ronald C. Rubenstein ◽  
Shannon R. Lockwood ◽  
Ellen Lide ◽  
Rebecca Bauer ◽  
Laurence Suaud ◽  
...  

The functional expression of the epithelial sodium channel (ENaC) appears elevated in cystic fibrosis (CF) airway epithelia, but the mechanism by which this occurs is not clear. We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) alters the trafficking of endogenously expressed human ENaC in the CFBE41o− model of CF bronchial epithelia. Functional expression of ENaC, as defined by amiloride-inhibited short-circuit current ( Isc) in Ussing chambers, was absent under control conditions but present in CFBE41o− parental and ΔF508-CFTR-overexpressing cells after treatment with 1 μM dexamethasone (Dex) for 24 h. The effect of Dex was mimicked by incubation with the glucocorticoid hydrocortisone but not with the mineralocorticoid aldosterone. Application of trypsin to the apical surface to activate uncleaved, “near-silent” ENaC caused an additional increase in amiloride-sensitive Isc in the Dex-treated cells and was without effect in the control cells, suggesting that Dex increased ENaC cell surface expression. In contrast, Dex treatment did not stimulate amiloride-sensitive Isc in CFBE41o− cells that stably express wild-type (wt) CFTR. CFBE41o− wt cells also had reduced expression of α- and γ-ENaC compared with parental and ΔF508-CFTR-overexpressing cells. Furthermore, application of trypsin to the apical surface of Dex-treated CFBE41o− wt cells did not stimulate amiloride-sensitive Isc, suggesting that ENaC remained absent from the surface of these cells even after Dex treatment. We also tested the effect of trafficking-corrected ΔF508-CFTR on ENaC functional expression. Incubation with 1 mM 4-phenylbutyrate synergistically increased Dex-induced ENaC functional expression in ΔF508-CFTR-overexpressing cells. These data support the hypothesis that wt CFTR can regulate the whole cell, functional, and surface expression of endogenous ENaC in airway epithelial cells and that absence of this regulation may foster ENaC hyperactivity in CF airway epithelia.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2055
Author(s):  
Andrew R. Connelly ◽  
Brian M. Jeong ◽  
Mackenzie E. Coden ◽  
Jacob Y. Cao ◽  
Tatiana Chirkova ◽  
...  

Respiratory syncytial virus (RSV) is a seasonal mucosal pathogen that infects the ciliated respiratory epithelium and results in the most severe morbidity in the first six months of life. RSV is a common cause of acute respiratory infection during infancy and is an important early-life risk factor strongly associated with asthma development. While this association has been repeatedly demonstrated, limited progress has been made on the mechanistic understanding in humans of the contribution of infant RSV infection to airway epithelial dysfunction. An active infection of epithelial cells with RSV in vitro results in heightened central metabolism and overall hypermetabolic state; however, little is known about whether natural infection with RSV in vivo results in lasting metabolic reprogramming of the airway epithelium in infancy. To address this gap, we performed functional metabolomics, 13C glucose metabolic flux analysis, and RNA-seq gene expression analysis of nasal airway epithelial cells (NAECs) sampled from infants between 2–3 years of age, with RSV infection or not during the first year of life. We found that RSV infection in infancy was associated with lasting epithelial metabolic reprogramming, which was characterized by (1) significant increase in glucose uptake and differential utilization of glucose by epithelium; (2) altered preferences for metabolism of several carbon and energy sources; and (3) significant sexual dimorphism in metabolic parameters, with RSV-induced metabolic changes most pronounced in male epithelium. In summary, our study supports the proposed phenomenon of metabolic reprogramming of epithelial cells associated with RSV infection in infancy and opens exciting new venues for pursuing mechanisms of RSV-induced epithelial barrier dysfunction in early life.


2003 ◽  
Vol 278 (52) ◽  
pp. 53035-53044 ◽  
Author(s):  
Martha M. Monick ◽  
Timur O. Yarovinsky ◽  
Linda S. Powers ◽  
Noah S. Butler ◽  
A. Brent Carter ◽  
...  

Virology ◽  
2017 ◽  
Vol 512 ◽  
pp. 144-150 ◽  
Author(s):  
Devi Rajan ◽  
Raghavan Chinnadurai ◽  
Evan L. O'Keefe ◽  
Seyhan Boyoglu-Barnum ◽  
Sean O. Todd ◽  
...  

2015 ◽  
Vol 90 (4) ◽  
pp. 1705-1717 ◽  
Author(s):  
K. M. McCutcheon ◽  
R. Jordan ◽  
M. E. Mawhorter ◽  
S. L. Noton ◽  
J. G. Powers ◽  
...  

ABSTRACTHuman respiratory syncytial virus (RSV) is a single-stranded RNA virus that causes acute, and occasionally fatal, lower respiratory illness in young infants, the elderly, and immunocompromised patients. Therapeutic interventions able to cut short viral replication and quickly return the airways to normal function are needed. An understanding of antiviral activities and their effects on host defense mechanisms is important for the design of safe and effective therapy. We targeted functionally and temporally distinct steps within the viral life cycle using small-molecule RSV inhibitors and studied their antiviral activities and their effects on innate interferon responses of airway epithelial cellsin vitro. Antivirals acting upstream of RSV polymerase activity (i.e., compounds targeting the fusion protein or the nucleoprotein) reduced viral load immediately postinfection and partially attenuated interferon responses. In contrast, antivirals directed to the RSV polymerase demonstrated activity throughout the viral replication cycle and specifically modulated the RIG-I/mitochondrial antiviral signaling protein (MAVS)/TBK1/IRF3/interferon-stimulated gene (ISG) axis, causing either an upregulation or a downregulation of interferon responses, depending on the mechanism of polymerase inhibition. Notably, polymerase inhibition leading to the accumulation of abortive RNA products correlated with the amplification of interferon-stimulated genes to up to 10 times above normal infection levels. Understanding how antiviral activities and their modulation of innate immunity may affect recovery from RSV infection will help guide the development of safe and effective therapies.IMPORTANCERSV circulates seasonally, causing acute lower respiratory disease. Therapeutic interventions with efficacy throughout the viral replication cycle, rapid viral clearance, and prevention of potentially harmful inflammatory responses are desirable. Compounds targeting the RSV polymerase inhibited virus replication late in the viral life cycle and, depending on the functional domain targeted, either attenuated or amplified RIG-I and downstream interferon pathways in infected cells. These data will help guide the development of safe and effective therapies by providing new molecular evidence that the mechanism of inhibition by an antiviral compound can directly impact innate antiviral immune responses in the airway epithelium.


Sign in / Sign up

Export Citation Format

Share Document