Perilla Ketone: A Model of Increased Pulmonary Microvascular Permeability Pulmonary Edema in Sheep

1987 ◽  
Vol 136 (6) ◽  
pp. 1453-1458 ◽  
Author(s):  
Jack W. Coggeshall ◽  
Peter L. Lefferts ◽  
Martha J. Butterfield ◽  
Gordon R. Bernard ◽  
Frank E. Carroll ◽  
...  
Resuscitation ◽  
1985 ◽  
Vol 13 (1) ◽  
pp. 25-29 ◽  
Author(s):  
Lazaro Gotloib ◽  
Eitan Barzilay ◽  
Avshalom Shustaka ◽  
Zwi Waissa ◽  
Amiram Lev

2001 ◽  
Vol 90 (1) ◽  
pp. 261-268 ◽  
Author(s):  
Leonardo C. Clavijo ◽  
Mary B. Carter ◽  
Paul J. Matheson ◽  
Mark A. Wilson ◽  
William B. Wead ◽  
...  

In vivo pulmonary arterial catheterization was used to determine the mechanism by which platelet-activating factor (PAF) produces pulmonary edema in rats. PAF induces pulmonary edema by increasing pulmonary microvascular permeability (PMP) without changing the pulmonary pressure gradient. Rats were cannulated for measurement of pulmonary arterial pressure (Ppa) and mean arterial pressure. PMP was determined by using either in vivo fluorescent videomicroscopy or the ex vivo Evans blue dye technique. WEB 2086 was administered intravenously (IV) to antagonize specific PAF effects. Three experiments were performed: 1) IV PAF, 2) topical PAF, and 3) Escherichia coli bacteremia. IV PAF induced systemic hypotension with a decrease in Ppa. PMP increased after IV PAF in a dose-related manner. Topical PAF increased PMP but decreased Ppa only at high doses. Both PMP (88 ± 5%) and Ppa (50 ± 3%) increased during E. coli bacteremia. PAF-receptor blockade prevents changes in Ppa and PMP after both topical PAF and E. coli bacteremia. PAF, which has been shown to mediate pulmonary edema in prior studies, appears to act in the lung by primarily increasing microvascular permeability. The presence of PAF might be prerequisite for pulmonary vascular constriction during gram-negative bacteremia.


CHEST Journal ◽  
1986 ◽  
Vol 89 (3) ◽  
pp. 471-472
Author(s):  
Eric L. Dyer

1989 ◽  
Vol 67 (2) ◽  
pp. 846-855 ◽  
Author(s):  
M. R. Littner ◽  
F. D. Lott

We infused A23187, a calcium ionophore, into the pulmonary circulation of dextran-salt-perfused isolated rabbit lungs to release endogenous arachidonic acid. This led to elevations in pulmonary arterial pressure and to pulmonary edema as measured by extravascular wet-to-dry weight ratios. The increase in pressure and edema was prevented by indomethacin, a cyclooxygenase enzyme inhibitor, and by 1-benzylimidazole, a selective inhibitor of thromboxane (Tx) A2 synthesis. Transvascular flux of 125I-albumin from vascular to extravascular spaces of the lung was not elevated by A23187 but was elevated by infusion of oleic acid, an agent known to produce permeability pulmonary edema. We confirmed that A23187 leads to elevations in cyclooxygenase products and that indomethacin and 1-benzylimidazole inhibit synthesis of all cyclooxygenase products and TxA2, respectively, by measuring perfusate levels of prostaglandin (PG) I2 as 6-ketoprostaglandin F1 alpha, PGE2, and PGF2 alpha and TxA2 as TxB2. We conclude that release of endogenous pulmonary arachidonic acid can lead to pulmonary edema from conversion of such arachidonic acid to cyclooxygenase products, most notably TxA2. This edema was most likely from a net hydrostatic accumulation of extravascular lung water with an unchanged permeability of the vascular space, since an index of permeability-surface area product (i.e., transvascular albumin flux) was not increased.


1988 ◽  
Vol 16 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Erich W. Russi ◽  
Ludwig Spaetling ◽  
Jürg Gmür ◽  
Henning Schneider

1983 ◽  
Vol 55 (4) ◽  
pp. 1098-1102
Author(s):  
J. P. Kohler ◽  
C. L. Rice ◽  
G. S. Moss ◽  
J. P. Szidon

In a model of increased hydrostatic pressure pulmonary edema Parker et al. (J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 267-276, 1978) demonstrated that alveolar pressure in occluded fluid-filled lung segments was determined primarily by interstitial fluid pressure. Alveolar pressure was subatmospheric at base line and rose with time as hydrostatic pressure was increased and pulmonary edema developed. To further test the hypothesis that fluid-filled alveolar pressure is determined by interstitial pressure we produced permeability pulmonary edema-constant hydrostatic pressure. After intravenous injection of oleic acid in dogs (0.01 mg/kg) the alveolar pressure rose from -6.85 +/- 0.8 to +4.60 +/- 2.28 Torr (P less than 0.001) after 1 h and +6.68 +/- 2.67 Torr (P less than 0.01) after 3 h. This rise in alveolar fluid pressure coincided with the onset of pulmonary edema. Our experiments demonstrate that during permeability pulmonary edema with constant capillary hydrostatic pressures, as with hemodynamic edema, alveolar pressure of fluid-filled segments seems to be determined by interstitial pressures.


Sign in / Sign up

Export Citation Format

Share Document