Morphological and molecular studies of Neosynechococcus sphagnicola, gen. et sp. nov. (Cyanobacteria, Synechococcales)

Phytotaxa ◽  
2014 ◽  
Vol 170 (1) ◽  
pp. 024 ◽  
Author(s):  
PETR DVOŘÁK ◽  
FRANTIŠEK HINDÁK ◽  
PETR HAŠLER ◽  
ALICA HINDÁKOVÁ ◽  
ALOISIE POULÍČKOVÁ

The genus Synechococcus represents an enigmatic group of cyanobacteria with very simple unicellular morphology and polyphyletic evolutionary origin. Here, we describe a new genus based on strain of Synechococcus-like cyanobacterium. The strain was isolated from the peat bog Klin (Slovakia), where it occupies different niches such as hyaline cells of Sphagnum, sheaths of cyanobacteria, dead cells of desmids, carapaces of dead crustaceans, and solitary in detritus. We describe this new genus using a combination of molecular, morphological and ecological features. A phylogeny of the 16S rRNA gene, 16S-23S ITS and rbcL loci showed a separate position of the investigated strain and its close proximity to filamentous cyanobacteria. Therefore, it is a novel lineage of Synechococcus-like cyanobacteria illustrating the polyphyletic nature of the genus Synechococcus. Moreover, the strain exhibits unique morphological and ecological features, which allow us to erect the new monospecific genus Neosynechococcus.

2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 663-675 ◽  
Author(s):  
Diego Bonaldo Genuário ◽  
Marcelo Gomes Marçal Vieira Vaz ◽  
Guilherme Scotta Hentschke ◽  
Célia Leite Sant’Anna ◽  
Marli Fátima Fiore

Nostoc is a common and well-studied genus of cyanobacteria and, according to molecular phylogeny, is a polyphyletic group. Therefore, revisions of this genus are urged in an attempt to clarify its taxonomy. Novel strains isolated from underexplored environments and assigned morphologically to the genus Nostoc are not genetically related to the ‘true Nostoc’ group. In this study, four strains isolated from biofilms collected in Antarctica and five strains originated from Brazilian mangroves were evaluated. Despite their morphological similarities to other morphotypes of Nostoc , these nine strains differed from other morphotypes in ecological, physiological and genetic aspects. Based on the phylogeny of the 16S rRNA gene, the Antarctic sequences were grouped together with the sequences of the Brazilian mangrove isolates and Nostoc sp. Mollenhauer 1 : 1-067 in a well-supported cluster (74 % bootstrap value, maximum-likelihood). This novel cluster was separated phylogenetically from the ‘true Nostoc’ clade and from the clades of the morphologically similar genera Mojavia and Desmonostoc. The 16S rRNA gene sequences generated in this study exhibited 96 % similarity to sequences from the nostocacean genera mentioned above. Physiologically, these nine strains showed the capacity to grow in a salinity range of 1–10 % NaCl, indicating their tolerance of saline conditions. These results provide support for the description of a new genus, named Halotia gen. nov., which is related morphologically to the genera Nostoc , Mojavia and Desmonostoc. Within this new genus, three novel species were recognized and described based on morphology and internal transcribed spacer secondary structures: Halotia branconii sp. nov., Halotia longispora sp. nov. and Halotia wernerae sp. nov., under the provisions of the International Code of Nomenclature for Algae, Fungi and Plants.


2004 ◽  
Vol 54 (6) ◽  
pp. 2057-2060 ◽  
Author(s):  
Amr M. Mohamed ◽  
Peter C. Iwen ◽  
Stefano Tarantolo ◽  
Steven H. Hinrichs

The characterization of a novel slowly growing, scotochromogenic Mycobacterium species is reported. This previously undescribed mycobacterial species was isolated from five different patients with symptomatic pulmonary infections. All isolates were acid-fast-positive and the mycolic acid profiles were unique and supported placement into the genus Mycobacterium. Phenotypic characteristics of each strain included optimal growth after 3 weeks at a temperature range of 30–35 °C, yellow pigmentation after incubation in the dark and production of a heat-stable catalase. The 16S rRNA gene and internal transcribed spacer 1 sequences were identical for all five strains, but distinct from all known mycobacterial species. Phylogenetic analysis based on the 16S rRNA gene sequence placed the novel species within the slowly growing mycobacteria group in close proximity to Mycobacterium malmoense, Mycobacterium avium, Mycobacterium kansasii and Mycobacterium scrofulaceum. These data support the conclusion that the related five described organisms represent a novel Mycobacterium species, for which the name Mycobacterium nebraskense sp. nov. is proposed, with the type strain UNMC-MY1349T (=ATCC BAA-837T=DSM 44803T).


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2138-2145 ◽  
Author(s):  
Xiangjing Wang ◽  
Feiyu Jia ◽  
Chongxi Liu ◽  
Junwei Zhao ◽  
Liang Wang ◽  
...  

A novel endophytic actinomycete, designated strain NEAU-J5T was isolated from roots of snap bean (Phaseolus vulgaris L.). Comparative analysis of the 16S rRNA gene sequence indicated that NEAU-J5T is phylogenetically related to members of the family Micromonosporaceae . The whole-cell sugars were galactose, mannose and glucose. The predominant menaquinones were MK-9(H4) and MK-9(H6). The major fatty acids were C16 : 0, C18 : 0, C17 : 1ω7c, iso-C15 : 0 and C17 : 0. The phospholipids were phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The DNA G+C content was 72.2 mol%. On the basis of the morphological and chemotaxonomic characteristics, phylogenetic analysis and characteristic patterns of 16S rRNA gene signature nucleotides, strain NEAU-J5T represents a novel species of a new genus within the family Micromonosporaceae , for which the name Xiangella phaseoli gen. nov., sp. nov. is proposed. The type strain of Xiangella phaseoli is strain NEAU-J5T ( = CGMCC 4.7038T = DSM 45730T).


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2011 ◽  
Vol 225 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Toshinori Kawanami ◽  
Kazuhiro Yatera ◽  
Kazumasa Fukuda ◽  
Kei Yamasaki ◽  
Masamizu Kunimoto ◽  
...  

2014 ◽  
Vol 81 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Brandee L. Stone ◽  
Nathan M. Russart ◽  
Robert A. Gaultney ◽  
Angela M. Floden ◽  
Jefferson A. Vaughan ◽  
...  

ABSTRACTScant attention has been paid to Lyme disease,Borrelia burgdorferi,Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports ofB. burgdorferiandI. scapularisin North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified asB. burgdorferi sensu latothrough sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileTintergenic spacer region,flaB,ospA,ospC, andp66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected withB. burgdorferiisolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, andB. burgdorferiM3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larvalI. scapularisticks were able to acquireB. burgdorferiM3 from infected mice; M3 was maintained inI. scapularisduring the molt from larva to nymph; and further, M3 was transmitted from infectedI. scapularisnymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectiousB. burgdorferipopulations in eastern North Dakota.


Sign in / Sign up

Export Citation Format

Share Document