New taxonomic combinations in West Indian Ocean Vanguerieae (Rubiaceae)

Phytotaxa ◽  
2016 ◽  
Vol 282 (4) ◽  
pp. 267 ◽  
Author(s):  
KENT KAINULAINEN ◽  
SYLVAIN G. RAZAFIMANDIMBISON

This paper provides new combinations for two species endemic to the Seychelles, Canthium carinatum and C. sechellarum, which are transferred to Peponidium (tribe Vanguerieae, Ixoroideae, Rubiaceae), as supported by recent molecular phylogenetic analyses. Several new combinations in Vanguerieae from Madagascar are also proposed, based on morphological studies. Canthium bakerianum and C. homolleanum are transferred to Peponidium, whereas C. andringitrense, C. mandrarense, and Peponidium montana are transferred to Pyrostria. The names Pyrostria angustifolia, P. media, and P. major, previously invalid, are here validly published.

Zootaxa ◽  
2020 ◽  
Vol 4732 (2) ◽  
pp. 201-257 ◽  
Author(s):  
CLAUDE VILVENS ◽  
SUZANNE T. WILLIAMS

In this study we list and figure a total of 22 species assigned to the genus Ilanga Herbert, 1987 that were collected during recent Paris Museum expeditions, of which 16 are new and described here (listed in the order they appear in the text): Ilanga herberti n. sp., I. euryomphalos n. sp., I. polygramma n. sp., I. stephanophora n. sp., I. harrytaylori n. sp., I. eurystoma n. sp., I. oxeia n. sp., I. cosmia n. sp., I. corrineae n. sp., I. comes n. sp., I. dongshaensis n. sp., I. philia n. sp., I. helicoides n. sp., I. lauensis n. sp., I. mesembrine n. sp. and I. boreia n. sp.. These species occur throughout the Indo-West Pacific, extending the known range of this genus beyond the south west Indian Ocean. We also synonymise Microgaza fulgens Dall, 1907 and Microgaza konos Vilvens, 2009 (syn. nov.) (as I. fulgens). New combinations include Ilanga fulgens and I. navakaensis. 


2021 ◽  
Author(s):  
Pierre Tulet ◽  
Bertrand Aunay ◽  
Guilhem Barruol ◽  
Christelle Barthe ◽  
Remi Belon ◽  
...  

AbstractToday, resilience in the face of cyclone risks has become a crucial issue for our societies. With climate change, the risk of strong cyclones occurring is expected to intensify significantly and to impact the way of life in many countries. To meet some of the associated challenges, the interdisciplinary ReNovRisk programme aims to study tropical cyclones and their impacts on the South-West Indian Ocean basin. This article is a presentation of the ReNovRisk programme, which is divided into four areas: study of cyclonic hazards, study of erosion and solid transport processes, study of water transfer and swell impacts on the coast, and studies of socio-economic impacts. The first transdisciplinary results of the programme are presented together with the database, which will be open access from mid-2021.


2021 ◽  
Vol 9 (5) ◽  
pp. 945
Author(s):  
Olivier Pruvost ◽  
Damien Richard ◽  
Karine Boyer ◽  
Stéphanie Javegny ◽  
Claudine Boyer ◽  
...  

A thorough knowledge of genotypic and phenotypic variations (e.g., virulence, resistance to antimicrobial compounds) in bacteria causing plant disease outbreaks is key for optimizing disease surveillance and management. Using a comprehensive strain collection, tandem repeat-based genotyping techniques and pathogenicity assays, we characterized the diversity of X. citri pv. citri from the South West Indian Ocean (SWIO) region. Most strains belonged to the prevalent lineage 1 pathotype A that has a wide host range among rutaceous species. We report the first occurrence of genetically unrelated, nonepidemic lineage 4 pathotype A* (strains with a host range restricted to Mexican lime and related species) in Mauritius, Moheli and Réunion. Microsatellite data revealed that strains from the Seychelles were diverse, grouped in three different clusters not detected in the Comoros and the Mascarenes. Pathogenicity data suggested a higher aggressiveness of strains of one of these clusters on citron (Citrus medica). With the noticeable exception of the Comoros, there was no sign of recent interisland movement of the pathogen. Consistent with this finding, the copL gene, a marker for the plasmid-borne copLAB copper resistance that was recently identified in Réunion, was not detected in 568 strains from any islands in the SWIO region apart from Réunion.


1910 ◽  
Vol 36 (3) ◽  
pp. 268 ◽  
Author(s):  
Stanley Gardiner ◽  
J. C. F. Fryer

2017 ◽  
Author(s):  
Alina Fiehn ◽  
Birgit Quack ◽  
Helmke Hepach ◽  
Steffen Fuhlbrügge ◽  
Susann Tegtmeier ◽  
...  

Abstract. Halogenated very short-lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. When transported to the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise on RV Sonne in the subtropical and tropical West Indian Ocean in July and August 2014, we measured the VSLS, methyl iodide (CH3I) and for the first time bromoform (CHBr3) and dibromomethane (CH2Br2), in surface seawater and the marine atmosphere to derive their emission strengths. Using the Lagrangian transport model Flexpart with ERA-Interim meteorological fields, we calculated the direct contribution of observed VSLS emissions to the stratospheric halogen burden during Asian summer monsoon. Furthermore, we compare the in situ calculations with the interannual variability of transport from a larger area of the West Indian Ocean surface to the stratosphere for July 2000–2015. We found that the West Indian Ocean is a strong source region for CHBr3 (910 pmol m−2 h−1), very strong for CH2Br2 (930 pmol m−2 h−1), and average for CH3I (460 pmol m−2 h−1). The atmospheric transport from the tropical West Indian Ocean surface to the stratosphere experiences two main pathways. On very short timescales, especially relevant for the shortest-lived compound CH3I (3.5 days lifetime), convection above the Indian Ocean lifts oceanic air masses and VSLS towards the tropopause. On a longer timescale, the Asian summer monsoon circulation transports oceanic VSLS towards India and Bay of Bengal, where they are lifted with the monsoon convection and reach stratospheric levels in the southeastern part of the Asian monsoon anticyclone. This transport pathway is more important for the longer-lived brominated compounds (17 and 150 days lifetime for CHBr3 and CH2Br2). The entrainment of CHBr3 and CH3I from the West Indian Ocean to the stratosphere during Asian summer monsoon is less than from previous cruises in the tropical West Pacific Ocean during boreal autumn/early winter, but higher than from the tropical Atlantic during boreal summer. In contrast, the projected CH2Br2 entrainment was very high because of the high emissions during the West Indian Ocean cruise. The 16-year July time series shows highest interannual variability for the short-lived CH3I and lowest for the long-lived CH2Br2. During this time period, a small increase of VSLS entrainment from the West Indian Ocean through the Asian monsoon to the stratosphere is found. Overall, this study confirms that the subtropical and tropical West Indian Ocean is an important source region of halogenated VSLS, especially CH2Br2, to the troposphere and stratosphere during the Asian summer monsoon.


Sign in / Sign up

Export Citation Format

Share Document