Species limits in Antbirds (Aves: Passeriformes: Thamnophilidae): an evaluation of Plumbeous Antvireo (Dysithamnus plumbeus) based on vocalizations

Zootaxa ◽  
2008 ◽  
Vol 1726 (1) ◽  
pp. 60 ◽  
Author(s):  
MORTON L. ISLER ◽  
PHYLLIS R. ISLER ◽  
BRET M. WHITNEY

Through most of the 20th Century, Dysithamnus plumbeus was considered to comprise three geographically remote subspecies based on plumage: D. p. plumbeus of the lowlands of southeastern Brazil; D. p. leucostictus of the east slope of the Andes from central Colombia to extreme northern Peru; and D .p tucuyensis endemic to the mountains of northern Venezuela. Some recent authors have elevated these taxa to species status without providing additional evidence. We analyzed vocal differences among these taxa and compared the extent of diagnostic differences to a benchmark for species status under the Biological Species Concept (BSC). Vocalizations of D. plumbeus differed sufficiently from the others for D. plumbeus to be considered specifically distinct. Although both calls and loudsongs of the two remaining taxa differed from each other in some aspects, the differences did not meet our benchmark for species separation. We therefore recommend that they be designated as D. leucostictus leucostictus and D. leucostictus tucuyensis pending the acquisition of additional vocal recordings or other contrary evidence.

Zootaxa ◽  
2009 ◽  
Vol 2301 (1) ◽  
pp. 29-54 ◽  
Author(s):  
FRANK E. RHEINDT ◽  
JAMES A. EATON

The question of how to define a species continues to divide biologists. Meanwhile, the application of different species concepts has led to disparate taxonomic treatments that confound conservationists and other biologists. The most widely followed guidelines to species designation in avian and other vertebrate taxonomy are Ernst Mayr’s Biological Species Concept (BSC) and Joel Cracraft’s version of the Phylogenetic Species Concept (PSC). Although the BSC is considered to be more conservative in its assignment of species status, there is a lack of research demonstrating differences in taxonomic treatment between the BSC and the PSC with reference to a multi-taxon multi-trait study system. We examined the case of five traditionally recognized species of shrike-babbler (Pteruthius) that have recently been divided into 19 species under the PSC. Re-analyzing previous morphological and molecular data and adding new vocal data, we propose a BSC classification of 9 species. However, taking into consideration geographic gaps in the sampling regime, we contend that additional data will likely reduce discrepancies between the total numbers of species designated under the PSC and BSC. The current PSC species total is a likely overestimate owing to species diagnosis based on characters that erroneously appear to be unique to a taxon at low sample size. The current BSC species total as here proposed is a likely underestimate on account of the conservative designation of taxa as subspecies in equivocal cases, e.g. where BSC species status is potentially warranted but may be masked by insufficient data.


The Auk ◽  
2021 ◽  
Author(s):  
Kevin Winker ◽  
Pamela C Rasmussen

Abstract Despite the acknowledged importance of defining avian species limits to scientific research, conservation, and management, in practice, they often remain contentious. This is true even among practitioners of a single species concept and is inevitable owing to the continuous nature of the speciation process, our incomplete and changing understanding of individual cases, and differing interpretations of available data. This issue of Ornithology brings together several papers on species limits, some more theoretical and general, and others case studies of specific taxa. These are viewed primarily through the lens of the biological species concept (BSC), by far the most widely adopted species concept in influential ornithological works. The more conceptual contributions focus on the importance of the integrative approach in species delimitation; the importance of considering selection with the increasing use of genomic data; examinations of the effectiveness of the Tobias et al. character-scoring species limits criteria; a review of thorny issues in species delimitation using examples from Australo-Papuan birds; and a review of the process of speciation that addresses how population divergence poses challenges. Case studies include population genomics of the American Kestrel (Falco sparverius); an integrative taxonomic analysis of Graceful Prinia (Prinia gracilis) that suggests two species are involved; and a reevaluation of species limits in Caribbean Sharp-shinned Hawk (Accipiter striatus) taxa.


Zootaxa ◽  
2017 ◽  
Vol 4221 (4) ◽  
pp. 431
Author(s):  
LEONARDO ESTEVES LOPES

The Unicolored Blackbird Agelasticus cyanopus (Vieillot, 1819) is a marsh bird with four allopatric subspecies restricted to lowlands in South America east of the Andes. I conducted a taxonomic revision of the species based on analysis of external morphological characters of 288 study skins, including all types available. My revision shows that: 1) Leistes unicolor Swainson, 1838, is a senior synonym of A. c. xenicus (Parkes, 1966) and, therefore, the correct name of the taxon should be A. c. unicolor (Swainson, 1838); 2) the range of A. c. unicolor (Swainson, 1838) is much wider than previously thought, extending from the mouth of the Rio Amazonas to the state of São Paulo, in southeastern Brazil, where it intergrades with A. c. atroolivaceus (zu Wied-Neuwied, 1831); 3) A. c. atroolivaceus extends its range well beyond the coast of Rio de Janeiro, reaching the coast of São Paulo, the central part of Minas Gerais, Bahia and Espírito Santo; and 4) specimens attributed to A. c. beniensis are highly variable, so this name must be considered a subjective junior synonym of the nominotypical taxon. Under the Biological Species Concept, two broadly parapatric species should be recognized, A. cyanopus and A. atroolivaceus (including unicolor as a subspecies). Under the Phylogenetic Species Concept or the General Lineage Concept of Species, the best taxonomic treatment is to recognize three species: A. cyanopus, A. atroolivaceus, and A. unicolor. 


2021 ◽  
Vol 102 (4) ◽  
Author(s):  
Yiyuan Li ◽  
Angela C. O’Donnell ◽  
Howard Ochman

Mosquito-borne arboviruses, including a diverse array of alphaviruses and flaviviruses, lead to hundreds of millions of human infections each year. Current methods for species-level classification of arboviruses adhere to guidelines prescribed by the International Committee on Taxonomy of Viruses (ICTV), and generally apply a polyphasic approach that might include information about viral vectors, hosts, geographical distribution, antigenicity, levels of DNA similarity, disease association and/or ecological characteristics. However, there is substantial variation in the criteria used to define viral species, which can lead to the establishment of artificial boundaries between species and inconsistencies when inferring their relatedness, variation and evolutionary history. In this study, we apply a single, uniform principle – that underlying the Biological Species Concept (BSC) – to define biological species of arboviruses based on recombination between genomes. Given that few recombination events have been documented in arboviruses, we investigate the incidence of recombination within and among major arboviral groups using an approach based on the ratio of homoplastic sites (recombinant alleles) to non-homoplastic sites (vertically transmitted alleles). This approach supports many ICTV-designations but also recognizes several cases in which a named species comprises multiple biological species. These findings demonstrate that this metric may be applied to all lifeforms, including viruses, and lead to more consistent and accurate delineation of viral species.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e68267 ◽  
Author(s):  
Lélia Lagache ◽  
Jean-Benoist Leger ◽  
Jean-Jacques Daudin ◽  
Rémy J. Petit ◽  
Corinne Vacher

Phytotaxa ◽  
2020 ◽  
Vol 455 (4) ◽  
pp. 262-266
Author(s):  
LIANG ZHANG ◽  
LI-BING ZHANG

The biological species concept is not exclusively applicable in many groups of organisms including ferns. Interspecific fern hybrids are not rare: there are 16 intergeneric hybrid genera in ferns confirmed with molecular data. Here we add one more hybrid genus in the tribe Lepisoreae of Polypodiaceae, ×Lepinema, formed via hybridization between parents in two genera: Ellipinema and Lepisorus.


2009 ◽  
Vol 20 (2) ◽  
pp. 176-185 ◽  
Author(s):  
OCTAVIO R. ROJAS-SOTO ◽  
ADOLFO G. NAVARRO-SIGÜENZA ◽  
ALEJANDRO ESPINOSA DE LOS MONTEROS

SummaryThe taxonomic criteria used as bases for endangered species lists can affect conservation policy decisions. We emphasize that the use of different taxonomic units affects the baselines of such lists. Recent taxonomic reviews for the Mexican avifauna provided the tools for assessing this effect on a highly diverse avifauna which is currently in need of serious conservation actions. Most ornithologists have used a taxonomy based on the biological species concept (BSC) to make decisions on species limits and therefore to set them into endangered species lists. However, the application of the phylogenetic species concept (PSC) as an alternative for delimiting species, results in a different panorama of what should be protected. Our analysis shows that the current official Mexican endangered species list, BSC based, encompasses 371 birds, ranked as 277 species and 94 subspecies. The same list of protected forms changes under the phylogenetic species concept because 47 of them are not recognized as valid species, while another 28 forms merit higher levels of protection. Additionally, under this concept another 11 forms should be candidates for inclusion based on their restricted distribution. We call attention to the fact that the use of one or another species concept affects endangered species lists.


2005 ◽  
Vol 176 (2) ◽  
pp. 221-225
Author(s):  
Jean Génermont

Abstract In 1980, Henri Tintant advocated the usefulness of the biological species concept in paleontology. At this time, this concept was still accepted by many neontologists, but it was already rather severely criticized by some others. In fact, a lot of new concepts appeared in the course of the following two decades. While a few ones are mere adjustments of the biological concept, for instance taking in account ecological criteria, in such a way that it could be applied to clonal organisms, some others, which were developed in connexion with the cladistic theory of taxonomy, are truly new from a conceptual point of view. The diagnosable version of the phylogenetic species concept is somewhat reminiscent of Simpson’s evolutionary species concept, since it accepts phyletic speciation as well as survival of the stem species after a cladogenetic event. One of its more criticizable features, from a cladistic point of view, is that the species are not necessarilly monophyletic. On another hand, according to the monophyly version of the phylogenetic species concept, species are recognized rather subjectively as monophyletic taxa revealed by some previous cladistic analysis dealing with operational taxonomic units. A consensus on the definition of species cannot be expected, since all concepts related to the biological one are founded on population grouping on the basis of potentially identical evolutionary fates, while those which are related to cladistic taxonomy are exclusively concerned with historical features.


2010 ◽  
Vol 365 (1547) ◽  
pp. 1853-1863 ◽  
Author(s):  
James Mallet

The development of what became known as the biological species concept began with a paper by Theodosius Dobzhansky in 1935, and was amplified by a mutualistic interaction between Dobzhansky, Alfred Emerson and Ernst Mayr after the second world war. By the 1950s and early 1960s, these authors had developed an influential concept of species as coadapted genetic complexes at equilibrium. At this time many features of species were seen as group advantages maintained by selection to avoid breakdown of beneficial coadaptation and the ‘gene pool’. Speciation thus seemed difficult. It seemed to require, more so than today, an external deus ex machina , such as allopatry or the founder effect, rather than ordinary within-species processes of natural selection, sexual selection, drift and gene flow. In the mid-1960s, the distinctions between group and individual selection were clarified. Dobzhansky and Mayr both understood the implications, but their views on species changed little. These group selectionist ideas now seem peculiar, and are becoming distinctly less popular today. Few vestiges of group selectionism and species-level adaptationism remain in recent reviews of speciation. One wonders how many of our own cherished views on evolution will seem as odd to future biologists.


Sign in / Sign up

Export Citation Format

Share Document