scholarly journals Representation of Galactic Dynamics Via Isoshifts Without Universe Expansion, Dark Matter and Dark Energy

2015 ◽  
Vol 4 (2) ◽  
pp. 26 ◽  
Author(s):  
Ruggero Maria Santilli
2013 ◽  
Vol 22 (12) ◽  
pp. 1342006 ◽  
Author(s):  
SALVATORE CAPOZZIELLO ◽  
TIBERIU HARKO ◽  
FRANCISCO S. N. LOBO ◽  
GONZALO J. OLMO

The nonequivalence between the metric and Palatini formalisms of f(R) gravity is an intriguing feature of these theories. However, in the recently proposed hybrid metric-Palatini gravity, consisting of the superposition of the metric Einstein–Hilbert Lagrangian with an [Formula: see text] term constructed à la Palatini, the "true" gravitational field is described by the interpolation of these two nonequivalent approaches. The theory predicts the existence of a light long-range scalar field, which passes the local constraints and affects the galactic and cosmological dynamics. Thus, the theory opens new possibilities for a unified approach, in the same theoretical framework, to the problems of dark energy and dark matter, without distinguishing a priori matter and geometric sources, but taking their dynamics into account under the same standard.


2013 ◽  
Vol 22 (12) ◽  
pp. 1342022 ◽  
Author(s):  
Y. JACK NG

In this paper, we address several fundamental issues in cosmology: What is the nature of dark energy and dark matter? Why is the dark sector so different from ordinary matter? Why is the effective cosmological constant nonzero but so incredibly small? What is the reason behind the emergence of a critical acceleration parameter of magnitude 10-8 cm/s2 in galactic dynamics? We suggest that the holographic principle is the linchpin in a unified scheme to understand these various issues.


2012 ◽  
Vol 27 (26) ◽  
pp. 1250144 ◽  
Author(s):  
C. E. PELLICER ◽  
ELISA G. M. FERREIRA ◽  
DANIEL C. GUARIENTO ◽  
ANDRÉ A. COSTA ◽  
LEILA L. GRAEF ◽  
...  

We consider a toy model to analyze the consequences of dark matter interaction with a dark energy background on the overall rotation of galaxy clusters and the misalignment between their dark matter and baryon distributions when compared to ΛCDM predictions. The interaction parameters are found via a genetic algorithm search. The results obtained suggest that interaction is a basic phenomenon whose effects are detectable even in simple models of galactic dynamics.


2014 ◽  
Vol 29 (21) ◽  
pp. 1444010
Author(s):  
Bruce H. J. McKellar ◽  
T. J. Goldman ◽  
G. J. Stephenson

If fermions interact with a scalar field, and there are many fermions present the scalar field may develop an expectation value and generate an effective mass for the fermions. This can lead to the formation of fermion clusters, which could be relevant for neutrino astrophysics and for dark matter astrophysics. Because this system may exhibit negative pressure, it also leads to a model of dark energy.


2006 ◽  
Author(s):  
Roberto Mainini ◽  
Loris Colombo ◽  
Silvio Bonometto
Keyword(s):  

2003 ◽  
Vol 568 (1-2) ◽  
pp. 8-10 ◽  
Author(s):  
Ramzi R Khuri
Keyword(s):  

2010 ◽  
Vol 19 (08n10) ◽  
pp. 1397-1403
Author(s):  
L. MARASSI

Several independent cosmological tests have shown evidences that the energy density of the universe is dominated by a dark energy component, which causes the present accelerated expansion. The large scale structure formation can be used to probe dark energy models, and the mass function of dark matter haloes is one of the best statistical tools to perform this study. We present here a statistical analysis of mass functions of galaxies under a homogeneous dark energy model, proposed in the work of Percival (2005), using an observational flux-limited X-ray cluster survey, and CMB data from WMAP. We compare, in our analysis, the standard Press–Schechter (PS) approach (where a Gaussian distribution is used to describe the primordial density fluctuation field of the mass function), and the PL (power–law) mass function (where we apply a non-extensive q-statistical distribution to the primordial density field). We conclude that the PS mass function cannot explain at the same time the X-ray and the CMB data (even at 99% confidence level), and the PS best fit dark energy equation of state parameter is ω = -0.58, which is distant from the cosmological constant case. The PL mass function provides better fits to the HIFLUGCS X-ray galaxy data and the CMB data; we also note that the ω parameter is very sensible to modifications in the PL free parameter, q, suggesting that the PL mass function could be a powerful tool to constrain dark energy models.


Sign in / Sign up

Export Citation Format

Share Document