scholarly journals Integrin αvβ5 Regulates Lung Vascular Permeability and Pulmonary Endothelial Barrier Function

2007 ◽  
Vol 36 (3) ◽  
pp. 377-386 ◽  
Author(s):  
George Su ◽  
Maki Hodnett ◽  
Nanyan Wu ◽  
Amha Atakilit ◽  
Cynthia Kosinski ◽  
...  
2018 ◽  
Vol 8 (3) ◽  
pp. 204589401879400 ◽  
Author(s):  
Sharon Rounds ◽  
Qing Lu

Smoking of tobacco products continues to be widespread, despite recent progress in decreasing use. Both in the United States and worldwide, cigarette smoking is a major cause of morbidity and mortality. Growing evidence indicates that acute respiratory distress syndrome (ARDS) is among the consequences of cigarette smoking. Based on the topic from the 2017 Grover Conference, we review evidence that cigarette smoking increases lung vascular permeability using both acute and longer exposures of mice to cigarette smoke (CS). We also review studies indicating that CS extract disrupts cultured lung endothelial cell barrier function through effects on focal adhesion contacts, adherens junctions, actin cytoskeleton, and microtubules. Among the potentially injurious components of CS, the reactive aldehyde, acrolein, similarly increases lung vascular permeability and disrupts barrier function. We speculate that inhibition of aldehyde-induced lung vascular permeability may prevent CS-induced lung injury.


2021 ◽  
Vol 22 (3) ◽  
pp. 1207
Author(s):  
Muhammad Aslam ◽  
Dursun Gündüz ◽  
Christian Troidl ◽  
Jacqueline Heger ◽  
Christian W. Hamm ◽  
...  

Increased vascular permeability is a hallmark of several cardiovascular anomalies, including ischaemia/reperfusion injury and inflammation. During both ischaemia/reperfusion and inflammation, massive amounts of various nucleotides, particularly adenosine 5′-triphosphate (ATP) and adenosine, are released that can induce a plethora of signalling pathways via activation of several purinergic receptors and may affect endothelial barrier properties. The nature of the effects on endothelial barrier function may depend on the prevalence and type of purinergic receptors activated in a particular tissue. In this review, we discuss the influence of the activation of various purinergic receptors and downstream signalling pathways on vascular permeability during pathological conditions.


2020 ◽  
Vol 127 (8) ◽  
pp. 1056-1073 ◽  
Author(s):  
Nikolaos Kakogiannos ◽  
Laura Ferrari ◽  
Costanza Giampietro ◽  
Anna Agata Scalise ◽  
Claudio Maderna ◽  
...  

Rationale: Intercellular tight junctions are crucial for correct regulation of the endothelial barrier. Their composition and integrity are affected in pathological contexts, such as inflammation and tumor growth. JAM-A (junctional adhesion molecule A) is a transmembrane component of tight junctions with a role in maintenance of endothelial barrier function, although how this is accomplished remains elusive. Objective: We aimed to understand the molecular mechanisms through which JAM-A expression regulates tight junction organization to control endothelial permeability, with potential implications under pathological conditions. Methods and Results: Genetic deletion of JAM-A in mice significantly increased vascular permeability. This was associated with significantly decreased expression of claudin-5 in the vasculature of various tissues, including brain and lung. We observed that C/EBP-α (CCAAT/enhancer-binding protein-α) can act as a transcription factor to trigger the expression of claudin-5 downstream of JAM-A, to thus enhance vascular barrier function. Accordingly, gain-of-function for C/EBP-α increased claudin-5 expression and decreased endothelial permeability, as measured by the passage of fluorescein isothiocyanate (FITC)-dextran through endothelial monolayers. Conversely, C/EBP-α loss-of-function showed the opposite effects of decreased claudin-5 levels and increased endothelial permeability. Mechanistically, JAM-A promoted C/EBP-α expression through suppression of β-catenin transcriptional activity, and also through activation of EPAC (exchange protein directly activated by cAMP). C/EBP-α then directly binds the promoter of claudin-5 to thereby promote its transcription. Finally, JAM-A–C/EBP-α–mediated regulation of claudin-5 was lost in blood vessels from tissue biopsies from patients with glioblastoma and ovarian cancer. Conclusions: We describe here a novel role for the transcription factor C/EBP-α that is positively modulated by JAM-A, a component of tight junctions that acts through EPAC to up-regulate the expression of claudin-5, to thus decrease endothelial permeability. Overall, these data unravel a regulatory molecular pathway through which tight junctions limit vascular permeability. This will help in the identification of further therapeutic targets for diseases associated with endothelial barrier dysfunction. Graphic Abstract: An graphic abstract is available for this article.


Sign in / Sign up

Export Citation Format

Share Document