The Development and Validation of Grade Eight Physics Test in the K-12 Science Curriculum

2018 ◽  
Vol 24 (7) ◽  
pp. 4832-4835
Author(s):  
Arnel A Lorenzana ◽  
Lydia S Roleda
2016 ◽  
Vol 10 (4) ◽  
pp. 187-198 ◽  
Author(s):  
Orly Lahav ◽  
Nuha Chagab ◽  
Vadim Talis

Purpose The purpose of this paper is to examine a central need of students who are blind: the ability to access science curriculum content. Design/methodology/approach Agent-based modeling is a relatively new computational modeling paradigm that models complex dynamic systems. NetLogo is a widely used agent-based modeling language that enables exploration and construction of models of complex systems by programming and running the rules and behaviors. Sonification of variables and events in an agent-based NetLogo computer model of gas in a container is used to convey phenomena information. This study examined mainly two research topics: the scientific conceptual knowledge and systems reasoning that were learned as a result of interaction with the listen-to-complexity (L2C) environment as appeared in answers to the pre- and post-tests and the learning topics of kinetic molecular theory of gas in chemistry that was learned as a result of interaction with the L2C environment. The case study research focused on A., a woman who is adventitiously blind, for eight sessions. Findings The participant successfully completed all curricular assignments; her scientific conceptual knowledge and systems reasoning became more specific and aligned with scientific knowledge. Practical implications A practical implication of further studies is that they are likely to have an impact on the accessibility of learning materials, especially in science education for students who are blind, as equal access to low-cost learning environments that are equivalent to those used by sighted users would support their inclusion in the K-12 academic curriculum. Originality/value The innovative and low-cost learning system that is used in this research is based on transmittal of visual information of dynamic and complex systems, providing perceptual compensation by harnessing auditory feedback. For the first time the L2C system is based on sound that represents a dynamic rather than a static array. In this study, the authors explore how a combination of several auditory representations may affect cognitive learning ability.


Author(s):  
Marc Vener del Carmen ◽  
Ferdinand Diano ◽  
Marie Paz E. Morales ◽  
Abel Ole

Culture and game-based physics activities are anticipated to promote active and fun learning of physics concepts. The study features non-conventional design and development of physics activities using traditional Filipino games also known as “Laro ng Lahi”. These non-conventional processes in the development comprise literature reviews, document analyses, and interviews. The eight developed “Laro ng Lahi”-based physics activities are presented as activity pack intended for highschool physics and introductory physics students. Key features of these activities include standard and synchronized rules and game mechanics, aligned and matched competencies in the K+12 science curriculum, inclination to student conceptual development, penchant for the preservation of Filipino culture and traditions, comprehensible texts and procedures and use of locally-available or indigenous materials. Results of the development study show that the “Laro ng Lahi”-based physics activities are content valid based on expert ratings (4.74 out of 5) with moderate to substantial agreement for the inter-rater reliability and an excellent over-all reliability index (0.90) suggesting a good and standard supplementary and support material for classroom use and for a wider goal of promoting active physics learning – Physics in Action.Keywords: Laro ng Lahi, culture-based, game-based, physics activities, material development


2014 ◽  
Vol 13 (4) ◽  
pp. 653-665 ◽  
Author(s):  
Julie R. Bokor ◽  
Jacob B. Landis ◽  
Kent J. Crippen

Basic phylogenetics and associated “tree thinking” are often minimized or excluded in formal school curricula. Informal settings provide an opportunity to extend the K–12 school curriculum, introducing learners to new ideas, piquing interest in science, and fostering scientific literacy. Similarly, university researchers participating in science, technology, engineering, and mathematics (STEM) outreach activities increase awareness of college and career options and highlight interdisciplinary fields of science research and augment the science curriculum. To aid in this effort, we designed a 6-h module in which students utilized 12 flowering plant species to generate morphological and molecular phylogenies using biological techniques and bioinformatics tools. The phylogenetics module was implemented with 83 high school students during a weeklong university STEM immersion program and aimed to increase student understanding of phylogenetics and coevolution of plants and pollinators. Student response reflected positive engagement and learning gains as evidenced through content assessments, program evaluation surveys, and program artifacts. We present the results of the first year of implementation and discuss modifications for future use in our immersion programs as well as in multiple course settings at the high school and undergraduate levels.


Author(s):  
Allen Tucker ◽  
Fadi Deek ◽  
Jill Jones ◽  
Dennis McCowan ◽  
Chris Stephenson ◽  
...  

2020 ◽  
Vol 21 (4) ◽  
pp. 1110-1131 ◽  
Author(s):  
Mark A. R. Raycroft ◽  
Alison B. Flynn

Science is rapidly changing with vast amounts of new information and technologies available. However, traditional instructional formats do not adequately prepare a diverse population of learners who need to evaluate and use knowledge, not simply memorize facts. Moreover, curricular change has been glacially slow. One starting goal for curricular change can be identifying the features of a current curriculum, including potential areas for improvement, but a model is needed to accomplish that goal. The vast majority of studies related to curricular change have been conducted in K-12 environments, with an increasing number in post-secondary environments. Herein, we describe a model for science curriculum evaluation that we designed by integrating a number of different approaches. That model evaluates the intended, enacted, and achieved components of the curriculum, anchored by analyzing learning outcomes through five lenses: (i) a scientific Framework reported by the US National Research Council, (ii) systems thinking, (iii) equity, diversity, and inclusion, (iv) professional skills, and (v) learning skills. No curriculum evaluation models to date have used the five learning outcomes lenses that we describe herein. As a proof of principle, we applied the evaluation model to one organic chemistry course, which revealed areas of strength and possible deficiencies. This model could be used to evaluate other science courses or programs. Possible deficiencies may be addressed in other courses, in the course at hand, or may not be deemed necessary or important to address, demonstrating the potential for this evaluation to generate areas for discussion and ultimately, improvements to post-secondary science education.


Sign in / Sign up

Export Citation Format

Share Document