A Comparative Study of Classical Models for Effective Thermal Conductivity of Nanofluids Filled with Al2O3/CuO Nanoparticles

2015 ◽  
Vol 4 (3) ◽  
pp. 169-173 ◽  
Author(s):  
Deepti Chauhan ◽  
Nilima Singhvi
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
B. Usowicz ◽  
J. B. Usowicz ◽  
L. B. Usowicz

A physical-statistical model for predicting the effective thermal conductivity of nanofluids is proposed. The volumetric unit of nanofluids in the model consists of solid, liquid, and gas particles and is treated as a system made up of regular geometric figures, spheres, filling the volumetric unit by layers. The model assumes that connections between layers of the spheres and between neighbouring spheres in the layer are represented by serial and parallel connections of thermal resistors, respectively. This model is expressed in terms of thermal resistance of nanoparticles and fluids and the multinomial distribution of particles in the nanofluids. The results for predicted and measured effective thermal conductivity of several nanofluids (Al2O3/ethylene glycol-based and Al2O3/water-based; CuO/ethylene glycol-based and CuO/water-based; and TiO2/ethylene glycol-based) are presented. The physical-statistical model shows a reasonably good agreement with the experimental results and gives more accurate predictions for the effective thermal conductivity of nanofluids compared to existing classical models.


2006 ◽  
Vol 05 (01) ◽  
pp. 23-33 ◽  
Author(s):  
S. M. S. MURSHED ◽  
K. C. LEONG ◽  
C. YANG

The uniformity and homogeneously dispersed nanoparticles in base fluids contribute to enhanced thermal conductivity of the mixture. By considering the uniformity and geometrical structures (e.g., body-centered cubic) of homogeneously dispersed nanoparticles in base fluids, a model for determining the effective thermal conductivity (ETC) of such nanoparticle-fluid suspensions, commonly known as nanofluids is proposed in this study. The theoretical results of the effective thermal conductivities of TiO 2/Deionized (DI) water and Al 2 O 3/DI water-based nanofluids are presented, and they are found to be in good agreement with our experimental results and also with those reported in the literature. The new model presented in this study shows a better prediction of the effective thermal conductivity of nanofluids compared to other classical models attributed to Maxwell, Hamilton–Crosser, and Bruggeman.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Pavan Kumar Vaitheeswaran ◽  
Ganesh Subbarayan

Particulate thermal interface materials (TIMs) are commonly used to transport heat from chip to heat sink. While high thermal conductance is achieved by large volume loadings of highly conducting particles in a compliant matrix, small volume loadings of stiff particles will ensure reduced thermal stresses in the brittle silicon device. Developing numerical models to estimate effective thermal and mechanical properties of TIM systems would help optimize TIM performance with respect to these conflicting requirements. Classical models, often based on single particle solutions or regular arrangement of particles, are insufficient as real-life TIM systems contain a distribution of particles at high volume fractions, where classical models are invalid. In our earlier work, a computationally efficient random network model (RNM) was developed to estimate the effective thermal conductivity of TIM systems (Kanuparthi et al., 2008, “An Efficient Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials,” IEEE Trans. Compon. Packag. Technol., 31(3), pp. 611–621; Dan et al., 2009, “An Improved Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials,” ASME Paper No. InterPACK2009-89116.) . This model is extended in this paper to estimate the effective elastic modulus of TIMs. Realistic microstructures are simulated and analyzed using the proposed method. Factors affecting the modulus (volume fraction and particle size distribution (PSD)) are also studied.


Sign in / Sign up

Export Citation Format

Share Document