Estimation of Effective Thermal and Mechanical Properties of Particulate Thermal Interface Materials by a Random Network Model

2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Pavan Kumar Vaitheeswaran ◽  
Ganesh Subbarayan

Particulate thermal interface materials (TIMs) are commonly used to transport heat from chip to heat sink. While high thermal conductance is achieved by large volume loadings of highly conducting particles in a compliant matrix, small volume loadings of stiff particles will ensure reduced thermal stresses in the brittle silicon device. Developing numerical models to estimate effective thermal and mechanical properties of TIM systems would help optimize TIM performance with respect to these conflicting requirements. Classical models, often based on single particle solutions or regular arrangement of particles, are insufficient as real-life TIM systems contain a distribution of particles at high volume fractions, where classical models are invalid. In our earlier work, a computationally efficient random network model (RNM) was developed to estimate the effective thermal conductivity of TIM systems (Kanuparthi et al., 2008, “An Efficient Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials,” IEEE Trans. Compon. Packag. Technol., 31(3), pp. 611–621; Dan et al., 2009, “An Improved Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials,” ASME Paper No. InterPACK2009-89116.) . This model is extended in this paper to estimate the effective elastic modulus of TIMs. Realistic microstructures are simulated and analyzed using the proposed method. Factors affecting the modulus (volume fraction and particle size distribution (PSD)) are also studied.

Author(s):  
Pavan Kumar Vaitheeswaran ◽  
Ganesh Subbarayan

Particulate thermal interface materials (TIMs) are commonly used to transport heat from chip to heat sink. While high thermal conductance is achieved by large volume loadings of highly conducting particles in a compliant matrix, small volume loadings of stiff particles will ensure reduced thermal stresses in the brittle silicon device. Developing numerical models to estimate effective thermal and mechanical properties of TIM systems would help optimize TIM performance with respect to these conflicting requirements. Classical models, often based on single particle solutions or regular arrangement of particles, are insufficient as real-life TIM systems contain a distriubtion of particles at high volume fractions, where classical models are invalid. In our earlier work, a computationally efficient random network model was developed to estimate the effective thermal conductivity of TIM systems [1,2]. This model is extended in this paper to estimate the effective elastic modulus of TIMs. Realistic microstructures are simulated and analyzed using the proposed method. Factors affecting the modulus (volume fraction and particle size distribution) are also studied.


Author(s):  
Arun Gowda ◽  
Annita Zhong ◽  
Sandeep Tonapi ◽  
Kaustubh Nagarkar ◽  
K. Srihari

Thermal Interface Materials (TIMs) play a key role in the thermal management of microelectronics by providing a path of low thermal impedance between the heat generating devices and the heat dissipating components (heat spreader/sink). In addition, TIMs need to reliably maintain this low thermal resistance path throughout the operating life of the device. Currently, several different TIM material solutions are employed to dissipate heat away from semiconductor devices. Thermal greases, adhesives, gels, pads, and phase change materials are among these material solutions. Each material system has its own advantages and associated application space. While thermal greases offer excellent thermal performance, their uncured state makes them susceptible to pump-out and other degradation mechanisms. On the other hand, adhesives offer structural support but offer a higher heat resistance path. Gels are designed to provide a level of cross-linking to allow the thermal performance of greases and prevent premature degradation. However, the degree of crosslinking can have a significant effect of the behavior of gels. In this research, TIMs with varying cross-linking densities are studied and their thermal and mechanical properties reported. The base resin systems and fillers were maintained constant, while slight compositional alternations were made to induce different degrees of cross-linking.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Lin Hu ◽  
William Evans ◽  
Pawel Keblinski

We present a concept for development of high thermal conductivity thermal interface materials (TIMs) via a rapid formation of conductive network. In particular we use molecular dynamics simulations to demonstrate the possibility of a formation of a network of solid nanoparticles in liquid solution and establish wetting and volume fraction conditions required for a rapid formation of such network. Then, we use Monte-Carlo simulations to determine effective thermal conductivity of the solid/liquid composite material. The presence of a percolating network dramatically increases the effective thermal conductivity, as compared to values characterizing dispersed particle structures.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
B. Dan ◽  
B. G. Sammakia ◽  
G. Subbarayan ◽  
S. Kanuparthi

Thermal interface materials (TIMs) are particulate composite materials widely used in the microelectronics industry to reduce the thermal resistance between the device and heat sink. Predictive modeling using fundamental physical principles is critical to developing new TIMs since it can be used to quantify the effect of particle volume fraction and arrangements on the effective thermal conductivity. The existing analytical descriptions of thermal transport in particulate systems do not accurately account for the effect of interparticle interactions, especially in the intermediate volume fractions of 30–80%. An efficient random network model (RNM) that captures the near-percolation transport in these particle-filled systems, taking into account the interparticle interactions and random size distributions, was previously developed by Kanuparthi et al. The RNM approach uses a cylindrical region to approximate the thermal transport within the filler particles and to capture the interparticle interactions. However, this approximation is less accurate when the polydispersivity of the particulate system increases. In addition, the accuracy of the RNM is dependent on the parameters inherent in an analytical description of thermal transport between two spherical particles and their numerical approximation into the network model. In the current paper, a novel semispherical approximation to the conductance of the fillers is presented as an alternative to the cylindrical region approximation used earlier. Compared with the cylindrical model, the thermal conductivities of the semispherical model are more closely to the finite element (FE) results. Based on the FE analysis, the network model is improved by developing an approximation of the critical cylindrical region between two spherical particles over which energy is transported. Comparing the RNM results with FE results and experimental data, a linear relationship of the critical parameter with the thermal conductivity ratio and the volume fraction was found that provides a more accurate prediction of the effective thermal conductivity of the particulate TIMs.


Sign in / Sign up

Export Citation Format

Share Document