An Improved Genetic Algorithm for DNA Motif Discovery with Gibbs Sampling Algorithm

2014 ◽  
Vol 8 (3) ◽  
pp. 219-225
Author(s):  
Changjun Zhou ◽  
Yanzhang Li ◽  
Qiang Zhang ◽  
Bin Wang
Author(s):  
ESSAM AL DAOUD

In this study, a new genetic algorithm was developed to discover the best motifs in a set of DNA sequences. The main steps were: finding the potential positions in each sequence by using few voters (1–5 sequences), constructing the chromosomes from the potential positions, evaluating the fitness for each gene (position) and for each chromosome, calculating the new random distribution, and using the new distribution to generate the next generation. To verify the effectiveness of the proposed algorithm, several real and artificial datasets were used; the results are compared to the standard genetic algorithm, and Gibbs, MEME, and consensus algorithms. Although all the algorithms have low correlation with the correct motifs, the new algorithm exhibits higher accuracy, without sacrificing implementation time.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Giovanni Scala ◽  
Antonio Federico ◽  
Dario Greco

Abstract Background The investigation of molecular alterations associated with the conservation and variation of DNA methylation in eukaryotes is gaining interest in the biomedical research community. Among the different determinants of methylation stability, the DNA composition of the CpG surrounding regions has been shown to have a crucial role in the maintenance and establishment of methylation statuses. This aspect has been previously characterized in a quantitative manner by inspecting the nucleotidic composition in the region. Research in this field still lacks a qualitative perspective, linked to the identification of certain sequences (or DNA motifs) related to particular DNA methylation phenomena. Results Here we present a novel computational strategy based on short DNA motif discovery in order to characterize sequence patterns related to aberrant CpG methylation events. We provide our framework as a user-friendly, shiny-based application, CpGmotifs, to easily retrieve and characterize DNA patterns related to CpG methylation in the human genome. Our tool supports the functional interpretation of deregulated methylation events by predicting transcription factors binding sites (TFBS) encompassing the identified motifs. Conclusions CpGmotifs is an open source software. Its source code is available on GitHub https://github.com/Greco-Lab/CpGmotifs and a ready-to-use docker image is provided on DockerHub at https://hub.docker.com/r/grecolab/cpgmotifs.


Sign in / Sign up

Export Citation Format

Share Document