dna motif discovery
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
pp. 61-63
Author(s):  
Anand Shanker Singh ◽  
G . Radhika ◽  
Ankita Singh ◽  
Debarshi Jana

A CO2-concentrating mechanism (CCM) is essential for the growth of most eukaryotic algae under ambient (392 ppm) and very low (<100 ppm) CO2 concentrations. In this study, we used replicated deep mRNAsequencing and regulatory network reconstruction to capture a remarkable scope of changes in gene expression that occurs when Chlamydomonas reinhardtii cells are shifted from high to very low levels of CO2 (≤100 ppm). CCM induction 30 to 180 min post-CO2 deprivation coincides with statistically signicant changes in the expression of an astonishing 38% (5884) of the 15,501 nonoverlapping C. reinhardtii genes. Of these genes, 1088 genes were induced and 3828 genes were downregulated by a log2 factor of 2. The latter indicate a global reduction in photosynthesis, protein synthesis, and energy-related biochemical pathways. The magnitude of transcriptional rearrangement and its major patterns are robust as analyzed by three different statistical methods. De novo DNA motif discovery revealed new putative binding sites for Myeloid oncogene family transcription factors potentially involved in activating low CO2–induced genes. The (CA)n repeat (9 ≤ n ≤ 25) is present in 29% of upregulated genes but almost absent from promoters of downregulated genes. These discoveries open many avenues for new research.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Giovanni Scala ◽  
Antonio Federico ◽  
Dario Greco

Abstract Background The investigation of molecular alterations associated with the conservation and variation of DNA methylation in eukaryotes is gaining interest in the biomedical research community. Among the different determinants of methylation stability, the DNA composition of the CpG surrounding regions has been shown to have a crucial role in the maintenance and establishment of methylation statuses. This aspect has been previously characterized in a quantitative manner by inspecting the nucleotidic composition in the region. Research in this field still lacks a qualitative perspective, linked to the identification of certain sequences (or DNA motifs) related to particular DNA methylation phenomena. Results Here we present a novel computational strategy based on short DNA motif discovery in order to characterize sequence patterns related to aberrant CpG methylation events. We provide our framework as a user-friendly, shiny-based application, CpGmotifs, to easily retrieve and characterize DNA patterns related to CpG methylation in the human genome. Our tool supports the functional interpretation of deregulated methylation events by predicting transcription factors binding sites (TFBS) encompassing the identified motifs. Conclusions CpGmotifs is an open source software. Its source code is available on GitHub https://github.com/Greco-Lab/CpGmotifs and a ready-to-use docker image is provided on DockerHub at https://hub.docker.com/r/grecolab/cpgmotifs.


2019 ◽  
Vol 17 (04) ◽  
pp. 1950021
Author(s):  
Qiang Yu ◽  
Xiang Zhao ◽  
Hongwei Huo

DNA motif discovery plays an important role in understanding the mechanisms of gene regulation. Most existing motif discovery algorithms can identify motifs in an efficient and effective manner when dealing with small datasets. However, large datasets generated by high-throughput sequencing technologies pose a huge challenge: it is too time-consuming to process the entire dataset, but if only a small sample sequence set is processed, it is difficult to identify infrequent motifs. In this paper, we propose a new DNA motif discovery algorithm: first divide the input dataset into multiple sample sequence sets, then refine initial motifs of each sample sequence set with the expectation maximization method, and finally combine all the results from each sample sequence set. Besides, we design a new initial motif generation method with the utilization of the entire dataset, which helps to identify infrequent motifs. The experimental results on the simulated data show that the proposed algorithm has better time performance for large datasets and better accuracy of identifying infrequent motifs than the compared algorithms. Also, we have verified the validity of the proposed algorithm on the real data.


2019 ◽  
Vol 15 (1) ◽  
pp. 4-26
Author(s):  
Fatma A. Hashim ◽  
Mai S. Mabrouk ◽  
Walid A.L. Atabany

Background: Bioinformatics is an interdisciplinary field that combines biology and information technology to study how to deal with the biological data. The DNA motif discovery problem is the main challenge of genome biology and its importance is directly proportional to increasing sequencing technologies which produce large amounts of data. DNA motif is a repeated portion of DNA sequences of major biological interest with important structural and functional features. Motif discovery plays a vital role in the antibody-biomarker identification which is useful for diagnosis of disease and to identify Transcription Factor Binding Sites (TFBSs) that help in learning the mechanisms for regulation of gene expression. Recently, scientists discovered that the TFs have a mutation rate five times higher than the flanking sequences, so motif discovery also has a crucial role in cancer discovery. Methods: Over the past decades, many attempts use different algorithms to design fast and accurate motif discovery tools. These algorithms are generally classified into consensus or probabilistic approach. Results: Many of DNA motif discovery algorithms are time-consuming and easily trapped in a local optimum. Conclusion: Nature-inspired algorithms and many of combinatorial algorithms are recently proposed to overcome the problems of consensus and probabilistic approaches. This paper presents a general classification of motif discovery algorithms with new sub-categories. It also presents a summary comparison between them.


2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Chadi Saad ◽  
Laurent Noé ◽  
Hugues Richard ◽  
Julie Leclerc ◽  
Marie-Pierre Buisine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document