New Exact Solutions for the Flow of Generalized Maxwell Fluid

2016 ◽  
Vol 13 (8) ◽  
pp. 5254-5257
Author(s):  
M. B Riaz ◽  
M. A Imran ◽  
K Shabbir
2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Changfeng Xue ◽  
Junxiang Nie

The Rayleigh-Stokes problem for a generalized Maxwell fluid in a porous half-space with a heated flat plate is investigated. For the description of such a viscoelastic fluid, a fractional calculus approach in the constitutive relationship model is used. By using the Fourier sine transform and the fractional Laplace transform, exact solutions of the velocity and the temperature are obtained. Some classical results can be regarded as particular cases of our results, such as the classical solutions of the first problem of Stokes for Newtonian viscous fluids, Maxwell fluids, and Maxwell fluids in a porous half-space.


2013 ◽  
Vol 477-478 ◽  
pp. 246-253
Author(s):  
Xiaoyi Guo

The fractional calculus approach has been taken into account in the Darcys law and the constitutive relationship of fluid model. Based on a modified Darcys law for a viscoelastic fluid, Stokes first problem is considered for a generalized Jeffreys fluid in a porous half space. By using the Fourier sine transform and the Laplace transform, two forms of exact solutions of Stokes first problem for a generalized Jeffreys fluid in the porous half space are obtained in term of generalized Mittag-Leffler function, and one of them is presented as the sum of the similar Newtonian solution and the corresponding non-Newtonian contributions. As the limiting cases, solutions of the Stokes first problem for the generalized second fluid, the fractional Maxwell fluid and the Newtonian fluid in the porous half space are also obtained.


Author(s):  
Sobia Younus

<span>Some new exact solutions to the equations governing the steady plane motion of an in compressible<span> fluid of variable viscosity for the chosen form of the vorticity distribution are determined by using<span> transformation technique. In this case the vorticity distribution is proportional to the stream function<span> perturbed by the product of a uniform stream and an exponential stream<br /><br class="Apple-interchange-newline" /></span></span></span></span>


Sign in / Sign up

Export Citation Format

Share Document