scholarly journals Exact solutions for the unsteady rotating flows of a generalized Maxwell fluid with oscillating pressure gradient between coaxial cylinders

2011 ◽  
Vol 62 (3) ◽  
pp. 1105-1115 ◽  
Author(s):  
Liancun Zheng ◽  
Chunrui Li ◽  
Xinxin Zhang ◽  
Yingtao Gao
2020 ◽  
Vol 24 (6 Part B) ◽  
pp. 4041-4048
Author(s):  
Fan Wang ◽  
Wang-Cheng Shen ◽  
Jin-Ling Liu ◽  
Ping Wang

In this paper, we consider the unsteady rotating flow of the generalized Maxwell fluid with fractional derivative model between two infinite straight circular cylinders, where the flow is due to an infinite straight circular cylinder rotating and oscillating pressure gradient. The velocity field is determined by means of the combine of the Laplace and finite Hankel transforms. The analytic solutions of the velocity and the shear stress are presented by series form in terms of the generalized G and R functions. The similar solutions can be also obtained for ordinary Maxwell and Newtonian fluids as limiting cases.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Changfeng Xue ◽  
Junxiang Nie

The Rayleigh-Stokes problem for a generalized Maxwell fluid in a porous half-space with a heated flat plate is investigated. For the description of such a viscoelastic fluid, a fractional calculus approach in the constitutive relationship model is used. By using the Fourier sine transform and the fractional Laplace transform, exact solutions of the velocity and the temperature are obtained. Some classical results can be regarded as particular cases of our results, such as the classical solutions of the first problem of Stokes for Newtonian viscous fluids, Maxwell fluids, and Maxwell fluids in a porous half-space.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Fang Wang ◽  
Jinling Liu

Most articles choose the transcendental function B1rrn to define the finite Hankel transform, and very few articles choose B0rrn. The derivations of B0rrn and B1rrn are also considered the same. In this paper, we find that the derivative formulas for the transcend function BNrrn are different and prove the derivative formulas for B0rrn and B1rrn. Based on the exact formulas of B0rrn and B1rrn, we keep on studying the helical flow of a generalized Maxwell fluid between two boundless coaxial cylinders. In this case, the inner and outer cylinders start to rotate around their axis of symmetry at different angular frequencies and slide at different linear velocities at time t=0+. We deduced the velocity field and shear stress via Laplace transform and finite Hankel transform and their inverse transforms. According to generalized G and R functions, the solutions we obtained are given in the form of integrals and series. The solution of ordinary Maxwell fluid has been also obtained by solving the limit of the general solution of fractional Maxwell fluid.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 989-1002
Author(s):  
Aamir Farooq ◽  
Muhammad Kamran ◽  
Yasir Bashir ◽  
Hijaz Ahmad ◽  
Azeem Shahzad ◽  
...  

Abstract The purpose of this proposed investigation is to study unsteady magneto hydrodynamic (MHD) mixed initial-boundary value problem for incompressible fractional Maxwell fluid model via oscillatory porous rectangular duct. Considering the modified Darcy’s law, the problem is simplified by using the method of the double finite Fourier sine and Laplace transforms. As a limiting case of the general solutions, the same results can be obtained for the classical Maxwell fluid. Also, the impact of magnetic parameter, porosity of medium, and the impact of various material parameters on the velocity profile and the corresponding tangential tensions are illuminated graphically. At the end, we will give the conclusion of the whole paper.


2020 ◽  
Vol 98 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Nauman Raza ◽  
Muhammad Asad Ullah

A comparative analysis is carried out to study the unsteady flow of a Maxwell fluid in the presence of Newtonian heating near a vertical flat plate. The fractional derivatives presented by Caputo and Caputo–Fabrizio are applied to make a physical model for a Maxwell fluid. Exact solutions of the non-dimensional temperature and velocity fields for Caputo and Caputo–Fabrizio time-fractional derivatives are determined via the Laplace transform technique. Numerical solutions of partial differential equations are obtained by employing Tzou’s and Stehfest’s algorithms to compare the results of both models. Exact solutions with integer-order derivative (fractional parameter α = 1) are also obtained for both temperature and velocity distributions as a special case. A graphical illustration is made to discuss the effect of Prandtl number Pr and time t on the temperature field. Similarly, the effects of Maxwell fluid parameter λ and other flow parameters on the velocity field are presented graphically, as well as in tabular form.


Sign in / Sign up

Export Citation Format

Share Document