Evaluation of Steady State Voltage Stability Margin of a Power System Using Search Group Algorithm

2016 ◽  
Vol 13 (11) ◽  
pp. 8326-8332 ◽  
Author(s):  
S. P Rajaram ◽  
S Selvaperumal
2021 ◽  
Author(s):  
Umang Patel

Power system stability is gaining importance because of unusual growth in power system. Day by day use of nonlinear load and other power electronics devices created distortions in the system which creates problems of voltage instability. Voltage stability of system is major concerns in power system stability. When a transmission network is operated near to their voltage stability limit it is difficult to control active-reactive power of the system. Our objectives are the analysis of voltage stability margin and active-reactive power control in proposed system which includes model of STATCOM with aim to analyse its behavior to improve voltage stability margin and active-reactive power control of the system under unbalanced condition. The study has been carried out using MATLAB Simulation program on three phase system connected to unbalanced three phase load via long transmission network and results of voltage and active-reactive power are presented. In future work, we can do power flow calculation of large power system network and find the weakest bus of the system and by placing STATCOM at that bus we can improve over all stability of the system


2018 ◽  
Vol 06 (09) ◽  
pp. 97-111 ◽  
Author(s):  
Oludamilare Bode Adewuyi ◽  
Mir Sayed Shah Danish ◽  
Abdul Motin Howlader ◽  
Tomonobu Senjyu ◽  
Mohammed E. Lotfy

Author(s):  
Ghassan Abdullah Salman ◽  
Hatim G. Abood ◽  
Mayyadah Sahib Ibrahim

The detection of potential voltage collapse in power systems is essential to maintain the voltage stability in heavy load demand. This paper proposes a method to detect weak buses in power systems using two stability indices: the voltage stability margin factor (dS/dY) and the voltage collapse prediction index (VCPI). Hence, the paper aims to improve the voltage stability of Iraqi transmission grid by allocating FACTS devices in the optimal locations and optimal sizes. Two types of FACTS are used in this paper which are Thyristor controlled series compensator (TCSC) and static var compensator (SVC). The objective function of the problem is fitted using particle swarm optimization (PSO). The proposed method is verified using simulation test on Diyala-132 kV network which is a part of the Iraqi power system. The results observed that improvement the voltage stability margin, the voltage profile of Diyala-132 kV is increased and the power losses is decreased.


Sign in / Sign up

Export Citation Format

Share Document